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Abstract

We develop a production function estimator for the case when firms endogenously select

into multiple destination markets where they compete imperfectly, and when researchers ob-

serve output denominated only in value. We show that ignoring the multi-destination dimen-

sion (i.e., exporting) yields biased and inconsistent inference, leading to unrealistic inference in

the data. In contrast, our estimator is consistent and performs well in finite samples. In French

manufacturing data, our estimator recovers increasing total returns to scale, decreasing returns

to flexible inputs, elasticities of demand between -21.5 and -3.4, and learning-by-exporting

effects between 0 and 4% per year.
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1 Introduction

Production function estimation is a central component of many economic analyses.1 While early
work relied on restrictive assumptions with respect to the evolution of unobserved shocks to supply,
remarkable progress has been made in the last 30 years towards specifying flexible conditions
under which structural elements of supply can be identified from firm or plant-level data (Olley
& Pakes, 1996; Blundell & Bond, 2000; Levinsohn & Petrin, 2003; Wooldridge, 2009; Ackerberg
et al., 2015; Gandhi et al., 2020). Nevertheless, significant gaps remain between the conditions
assumed by the literature and the real-world datasets confronted by practitioners (De Loecker &
Goldberg, 2014; De Loecker & Syverson, 2021).

One fundamental problem emphasized in the literature is that since output is usually observed
in monetary terms—i.e., sales, not physical quantities—the pricing decisions of firms directly influ-
ence the outcome variable (sales). In this case, unobserved shocks to demand bias the estimation
of output elasticities, even if unobserved shocks to supply are adequately controlled for (Klette
& Griliches, 1996; Foster et al., 2008; De Loecker & Goldberg, 2014; De Loecker & Syverson,
2021). The standard practice of deflating firm-level revenues by industry-wide price indices only
addresses the problem if all firms within an industry sell at the same price;2 and the oft-cited
workaround from Klette & Griliches (1996) (KG hereafter), where the inverse demand function is
substituted for missing price data, delivers consistent estimates only in the case that all firms sell
to a single market.3 In reality, many firms serve multiple destinations and charge firm-destination
specific prices, which implies that the moment conditions employed by existing production func-
tion estimators are invalid.

In this paper, we develop a procedure to estimate structural elements of supply and demand
from firm-level data when firms can potentially serve multiple destination markets wherein they
face firm-market-time specific demand conditions, and when outputs are only observed in mon-
etary terms. We start with demonstrating problems in standard approaches to estimating produc-
tion functions. Our estimator overcomes these problems by leveraging a key feature of modern

1Researchers estimate production functions for a wide array of purposes. The structural coefficients can be them-
selves of interest, as in studies of returns to scale (Caballero & Lyons, 1992) or can be used to estimate markups (Hall,
1986). Alternatively, researchers may aim to control for estimated productivity in order to address omitted variable
bias (Almunia et al., 2021), or may estimate productivity as the residual of a production function and then regress this
residual on other explanatory variables in order to study the determinants of productivity (Harrigan et al., 2023). For
a recent review of the literature, see De Loecker & Syverson (2021).

2A sufficient condition for a unique price is homogeneous output. However, this approach is often used to analyze
markets for goods that are clearly not homogeneous. This is of particular concern when researchers use estimated
output elasticities to compute firm-specific markups. In a market with homogeneous output and free entry (or perfect
competition), one would expect marginal cost pricing, i.e., no markups. In this case, the object of inquiry (variable
markups) is inconsistent with the assumptions of the model, as noted by Bond et al. (2021).

3Klette & Griliches (1996) is frequently cited as the work-around to unobserved firm-specific output prices; for
example, see Melitz & Levinsohn (2006), De Loecker (2011) and Grieco et al. (2016).
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economies: firms sell in multiple markets.
We specify a data generating process in which heterogeneous firms endogenously select desti-

nation markets to serve, destination-specific quantities and prices, and quantities of flexible inputs
to hire, each period. We make the standard assumptions that firms must pay both fixed and variable
trade costs to ship goods across borders, and that firms neglect the effect of their own pricing de-
cision on market-wide price indices (i.e., monopolistic competition). Non-constant marginal cost
functions together with fixed market entry costs imply that optimization requires firms to solve
a combinatorial discrete choice problem in which market entry decisions and destination-specific
quantities and prices are chosen jointly and simultaneously. Given the combinatorial structure of
the optimization, demand conditions in any given market can affect the sales in all other markets
both through the extensive margin of market entry, and through the intensive margin (i.e., condi-
tional on the same set of destinations), as in Almunia et al. (2021).4

On the demand side, we assume that a representative consumer in each market aggregates
quantities of individual varieties with a constant elasticity of substitution (CES) utility function,
but we augment this standard demand system with two forms of firm-destination-year demand
heterogeneity. First, representative agents have ex ante taste shocks that are revealed to the firm
prior to making production plans, and hence affect input choices. Second, representative agents
have ex post taste shocks that are realized at the point of sale, and hence are unknown to firms
at the time that they choose flexible inputs. If not controlled for, the ex ante demand shocks
generate omitted variable bias—or transmission bias, as it is called in the literature—because
they influence flexible input choices and directly affect revenues. The ex post shocks rationalize
variation in flexible input shares in revenues across firms that use the same quantities of inputs. Ex

post firm-destination-year shocks also generate variation in prices and markups both across firms
and within firms across destinations. Hence, while we impose some structure on demand in order
to circumvent missing price data, our model is flexible enough to allow for heterogeneous pricing
behavior that is potentially important in real-world markets.5

Exploiting nonparametric identification results from Gandhi et al. (2020), we estimate the out-
put elasticities of flexible and quasi-fixed inputs without imposing any assumptions on the pro-
duction function beyond multiplicative separability between the (unobserved) productivity shifter
and the rest of the production function. Estimation proceeds in two steps. First, we project the
expenditure share of flexible inputs (e.g., materials) in revenues on all inputs. This “factor share”
regression nonparametrically identifies what is sometimes called the “revenue elasticity” of flexible

4Under certain conditions on the profit function, this combinatorial discrete choice problem belongs to the class of
problems studied by Arkolakis & Eckert (2017), and hence can be solved with their algorithm. Though our estimation
strategy does not require that these conditions hold.

5While our model allows for these features, we cannot estimate markups or study strategic pricing behavior, given
the data constraints.
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inputs—i.e., composites of output elasticities and the demand elasticity. While this first-step re-
gression exploits the first order conditions of the firm, identification does not rely on any particular
functional form of the production function.

Next, we use the flexible input elasticities from the first step regression to compute the con-
tribution of flexible inputs to revenues. We subtract this contribution from revenues, along with
the residual from the first step. We then regress the resulting values on predetermined inputs (e.g.,
capital) and a firm-specific demand proxy constructed from firm-level export revenue shares and
the residual from the first stage.6 We estimate the second step regression by generalized method of
moments (GMM). The demand elasticity is identified by both cross-firm and time series variation
in the share of export sales in total sales. This variation is driven by firm-specific time and market-
specific demand shocks, time series variation in destination market aggregate demand shifters, and
time and market-specific variation in fixed costs of entry. The demand elasticity is then used to
recover output elasticities and retrieve the production function itself.

The model could also be estimated via the more popular control function methods of Blundell
& Bond (2000), Wooldridge (2009) or Ackerberg et al. (2015).7 However, recent work indicates
two practical issues with the implementation of such methods. First, Gandhi et al. (2020) demon-
strate that the control function method is likely biased and inconsistent due to weak instruments.
Their argument relies on lack of sufficient input price variation in the data, which is necessary for
identification in the control function method. Second, Ackerberg et al. (2023) show that there are,
in fact, multiple solutions to the GMM optimization in the standard control function framework,
even when the sample size goes to infinity. Hence, results may be sensitive to the initial conditions
given to the numerical search procedure, and there may not be obvious ways to choose among
multiple solution vectors. This is particularly worrisome because one such solution is that of OLS,
which is typically used to set initial values for the GMM search. In contrast, the factor shares
approach does not rely on material input price variation for identification, and the GMM used in
the second step does not admit multiple solutions.

We perform Monte Carlo simulations in order to compare the statistical properties of our fac-
tor share multi-market estimator to: (1) the standard practice of deflating firm-level revenues by

6According to our model, the residual from the first stage regression corresponds to a weighted average of unob-
served ex post firm-destination-year demand shocks. Combining this residual with firm-level export revenue shares
allows us to build a proxy for the weighted average of ex ante firm-specific demand shocks. Variation in this demand
proxy allows us to estimate the curvature of demand without building aggregate demand shifters in each market from
industry-wide price indices—as in the KG single-market approach—and without even knowing the set of destinations
served by firms.

7These are the models most frequently cited when researchers use the control function method. But in fact, these
models are all written for value-added production functions. As far as we are aware, Gandhi et al. (2020) is the
only paper that establishes conditions under which the gross output production function is identified via the control
function method. The control function approach we consider does include materials and follows the version developed
in Gandhi et al. (2020).
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industry-wide price indices (estimated via factor share), (2) the estimator that controls for aggregate
sales in the domestic market as in KG (estimated via the factor share method). We also estimate
models by control function for comparison. We demonstrate that if the data generating process co-
incides with our multi-destination trade model, then only the factor share multi-market estimator
is consistent. The estimator also performs well in finite samples, in that the errors are small and
approximately centered on zero, and confidence intervals have good “coverage ratios” (i.e., 95%
confidence intervals contain the true parameters in about 95% of the simulated samples). Other
estimators are inconsistent, strongly biased (compared to ours), and have confidence intervals with
poor coverage ratios.

Finally, we use our procedure to study returns to scale, the elasticity of demand, and the effect
of exporting on productivity in a panel of French manufacturing firms in 1994–2016. Using our
estimator, we find price elasticities of demand ranging between -21.5 and -3.4, depending on in-
dustries, which is a range that is consistent with estimates from the gravity literature (for example,
Shapiro 2016; Fontagné et al. 2022). On the supply side, we estimate that returns to flexible inputs
are less than 1, on average. Decreasing returns to flexible inputs imply negative cross-market cost
complementarities as in Almunia et al. (2021). We find overall increasing returns to scale, on aver-
age around 1.15. We also find evidence of learning by exporting (LBE) between zero and 4 percent
year-on-year. These estimates imply cross-section differences in productivity between exporters
and non-exporters of up to 40 percent. The model with no demand correction yields lower returns
to scale, consistent with unaddressed transmission bias. The model with a single-market correc-
tion delivers unrealistic elasticities of demand (despite the relatively long period) and unrealistic
returns to scale. The control function yields implausibly low capital elasticities, and implausibly
high price elasticity of demand for differentiated-good markets. Overall, our estimator outperforms
existing methods in terms of obtaining sensible estimates of supply and demand elasticities in the
data.

Our main contribution is to develop a production function estimator that exploits moment con-
ditions that are consistent with a model in which firms potentially serve multiple destination mar-
kets and face heterogeneous demand shocks, without relying on quantity data. When quantity data
are observed, output elasticities can be estimated without imposing structure on pricing behavior
(as in, for example, Aw et al. 2011; Roberts et al. 2018; Blum et al. 2023). But in this case, struc-
tural assumptions are required on the supply side with respect to how firms apportion inputs across
multiple production lines or products. To balance high demands on the data stemming from the
existence of multiples production lines, quantity-based multi-product productivity estimators often
rely on restrictive functional form assumption for the production function (Cobb-Douglas), e.g.,
Blum et al. 2023; de Roux et al. 2021. Additionally, it may be difficult to compare quantities across
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firms and products in a meaningful way, as noted by De Loecker & Goldberg (2014).8 Moreover,
physical quantity data are only available in rare datasets, and even then only for particular indus-
tries, limiting the applicability of quantity-based multi-product estimation techniques.9 In contrast,
we offer an approach that can be implemented in a wide range of differentiated-product markets
with information that is widely available.

Beyond the production function literature mentioned above, our paper is related to a small
literature on cross-market cost complementarities. Berman et al. (2015), Aghion et al. (2022),
Barrows & Ollivier (2021) and Almunia et al. (2021) all estimate the effect of demand shocks
in a given market on sales in a different market. If the returns to flexible inputs are decreasing,
then more supply to one market increases the cost of serving other markets. Hence, positive ex

ante demand shocks in one market should lower sales in another market. Neither Berman et al.
(2015) nor Barrows & Ollivier (2021) estimate production function parameters, but rather focus on
the reduced form connection between demand shocks in one market and sales in another market.
Almunia et al. (2021) specifies a similar model to the one we develop. However, the procedure
used by Almunia et al. (2021) to estimate the production function and the elasticity of demand
is not consistent with the conditions necessary for cross-market cost complementarities nor with
multi-destination markets, which we demonstrate in Appendix I.10

Finally, our application is related to the literature on productivity-enhancing effects of export-
ing (Van Biesebroeck, 2005; De Loecker, 2007; Wagner, 2007, 2012; Garcia-Marin & Voigtländer,
2019; Atkin et al., 2017; Buus et al., 2022). When quantities are observed, then one can study LBE
without explicitly modeling the export market entry decision and export market itself. However,
when outputs are denominated in value it is critical to employ a multi-destination model that in-
cludes a correction for demand from multiple markets. Otherwise, an inconsistency arises between
studying the impact of exporting and an estimation procedure that allows for only one, domestic
market. In fact, we do not know a paper on LBE—including those cited just above—that addresses
this issue.11

8Quoting directly from De Loecker & Goldberg (2014), “the introduction of additional data creates its own chal-
lenges; although more data may help alleviate some of the problems discussed above, they are not a panacea” (page
206).

9For example, Blum et al. (2023) focus on only 10 3-digit ISIC industries for which there is a standard and uniform
measure of physical quantities of output across firms, which yields only 2749 firms for Chilean manufacturing. Dhyne
et al. (2022) analyze just 6 2-product environment in which firms tend to produce the same two 6-digit goods, thereby
excluding roughly 90% of firm-year observations. de Roux et al. (2021) focus only on firms producing rubber and
plastic products in the Columbian manufacturing survey (covering 362 firms).

10Cross-market cost complementarities also cause the multinational location choice model of Arkolakis et al. (2023)
to feature a combinatorial discrete choice problem. They develop a procedure to solve this problem, but need to assume
ex-ante conditions that we cannot verify in the data.

11Van Biesebroeck (2005), De Loecker (2007) and De Loecker (2013) all deflate sales or value added by industry
price indices—invariably, domestic price indices—in order to approximate quantities. This leaves firm-level variation
in demand shocks a source of transmission bias. In addition, using domestic price indices implies that price conditions
faced by exporters are identical in the domestic and foreign markets, which is at odds with the existence of variable
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2 Existing Estimators

Before developing our estimator, we find it useful to demonstrate some uncomfortable features
of standard production function estimation routines, i.e. the control function approach with and
without the KG single-market correction. We estimate these models on a quasi-exhaustive panel of
French manufacturing firms over the period 1994–2016. We argue that it is likely that the results
feature transmission bias, even after controlling for supply side shocks and aggregate demand
shocks. Our estimator, in contrast, overcomes these problems.

We consider a setting in which a researcher observes a panel of firms, denoted f , over mul-
tiple periods t, within some industry. In each period, the researcher observes flexible inputs
vvv f t = (v1

f t ,...,v
V
f t) and quasi-fixed inputs κκκ f t = (κ1

f t ,...,κ
K
f t ) in real values, but not real output,

Q f t . Instead, the researcher observes only revenues

R f t ≡ Q f tP f t , (1)

where P f it indicates the average output price charged by firm f in year t.12 Researchers face this
setting when studying the vast majority of firm-level balance sheet data sets, as do we with French
manufacturing data. We make the usual assumptions that all firms operating in the same industry
produce with the same technology and that unobserved productivity shocks ω f t are Hicks-neutral.
With these assumptions we can write output as

Q f t = exp(ω f t)F(vvv f t ,κκκ f t)⇐⇒ q f t = ω f t + f (vvv f t ,κκκ f t), (2)

with Q f t (q f t) denoting the quantity in levels (logs) of output produced by firm f in year t and F (·)
( f (·)) an industry-specific function expressed in levels (logs).

A standard approach to estimating the desired objects is to assume a translog form for F (·)
in materials, labor, and capital, deflate revenues by an industry-wide price index, and estimate
structural parameters via the control function method. Substituting (2) into (1), we can write the
estimation equation as

r̃ f t ≡ ln

(
R f t

Λt

)
= γ

0 + γ
mm f t + γ

ll f t + γ
kk f t +

1
2

γ
mm (mm) f t +

1
2

γ
ll (ll) f t +

1
2

γ
kk (kk) f t

+ γ
mk (mk) f t + γ

ml (ml) f t + γ
lk (lk) f t +ω f t + ln ˜̄P f t , (3)

where Λt denotes the industry’s price index and ˜̄P f t ≡ P̄f t/Λt . In equation (3) ω f t and ln ˜̄P f t

trade barriers and different market conditions.
12In general, firms may charge different prices for the same product because of different demand conditions in

different markets, transportation costs, or idiosyncratic consumer tastes.
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are unobserved by the researcher and potentially endogenous. The γ coefficients are structural
parameters of F (·) to be estimated.

In the case that all firms sell at the same price, then ln ˜̄P f t = 0, and the γ coefficients can
be consistently estimated, as long as transmission bias stemming from unobserved productivity
shocks is adequately addressed. However, in differentiated-good markets, it is highly unlikely that
all firms charge the same price. Hence, even if the correlation between productivity and input
choices is addressed, the firm-specific price deviation from the price index contaminates the error
term, generating omitted variable bias.

In order to asses to what extent this bias is economically meaningful we implement the standard
control function method in a quasi-exhaustive panel of French manufacturing firms over the period
1994–2016. Most of the data comes from firm balance sheets from the FICUS and FARE datasets,
which originate in firms’ tax declarations. Data construction and descriptive statistics are presented
in Section 6.1. We use the gross output control function estimator from Gandhi et al. (2020) (see
Appendix C for details).13 Given the translog assumption, we can compute output elasticities for
each factor j ∈ {m, l,k}

σ
j
f t

(
m f t , l f t ,k f t

)
≡

∂ f (m f t , l f t ,k f t)

∂ j f t
= γ

j + γ
jmm f t + γ

jll f t + γ
jkk f t (4)

and returns to scale

RT S f t
(
m f t , l f t ,k f t

)
≡ ∑

j∈{m,l,k}
σ

j
f t

(
m f t , l f t ,k f t

)
. (5)

In Figure 1, we plot with black triangles XXXX FOR CLARITY, PLS CHANGE TO HOL-
LOW TRIANGLES AND DOTS XXXX average returns to scale (RTS) and output elasticities for
materials, labor, and capital estimated by industry via the control function method. Estimated av-
erage returns to scale are very near unity for 9 out of 10 industries, and output elasticities vary
from 0.4 to 0.7 for materials and from 0.2 to 0.4 for labor for the most part, outside of two outlier
industries (Rubbers and Plastics and Communication Electronics). Industry-specific median esti-
mates are very similar (not reported). These results are quite similar to control function estimates
from other panel datasets.

We reiterate that for manufacturing industries, we do not expect ln ˜̄P f t = 0. Perhaps for a
few very narrowly defined industries like cement, we might expect a single homogenous output
price to prevail. But for industries like chemicals, machine equipment, or textiles, we expect

13The estimator from Gandhi et al. (2020) is more suited to our exercise as it is built for gross output, whereas the
estimators from Ackerberg et al. (2015) and Wooldridge (2009) are built for value added. The identification and the
moment conditions are virtually identical, witht he only difference being that one does not have to estimate the output
elasticity of materials in the value added case.
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Figure 1: Control Function and OLS Estimates in the French Data
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Notes. The figure reports average estimated returns to scale (RTS) and output elasticities to capital (σK), materials
(σM), and labor (σL). Black X’s plot the average input expenditure in revenues for materials and labor and the average
factor share residual for capital.

that firms produce horizontally differentiated products, and thus face downward sloping demand
curves. Without a model of pricing behavior, it is difficult to predict the magnitude or even the
sign of the bias stemming from unobserved output price heterogeneity. But whatever the model,
we would expect that firms jointly determine output prices and input decisions, and thus we would
not expect the moment conditions exploited in the control function to hold.

And yet, at first glance at least, the results in Figure 1 appear eminently plausible. It is nat-
ural to think that returns to scale are roughly constant, and that materials and labor account for
a substantial share of the output elasticity. Moreover, this is a common finding in the literature.
Hence, while unobserved output price heterogeneity theoretically leads to omitted variable bias in
(3), given the remarkable stability of the estimated returns to scale, it is tempting to conclude that
the bias is negligible, empirically.

However, when we compare estimated output elasticities to the factor shares in the data, indi-
cations of bias emerge. In Figure 1, we plot with black X’s the average factor share in revenue by
industry. For materials and labor, this value is the average expenditure share in revenue across the
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sample. For capital, we compute the factor share as 1 minus the expenditure share for materials
and labor, what we term the “residual capital share”. If returns to scale were really constant, and
firm-specific price deviations were exogenous, or null, then factor shares should sum to one, so
the computation of the capital share as the residual would be valid. But in Figure 1, we find that
estimated capital elasticities are only about one quarter to one third of the residual capital share
computed from the data. In contrast, estimated material elasticities are about 50% higher than ma-
terials expenditure share in revenue. Under the assumptions of perfect competition and constant
returns to scale—both necessary assumptions to rationalize the findings in Figure 1—it appears
that the estimated capital elasticity is too low and the estimated material elasticity is too high.

To gain further insight into this discrepancy, it is useful to examine the results from OLS esti-
mates of (3), plotted in red dots in Figure 1. Just as with the control function, the OLS estimates
indicate that returns to scale are roughly unity, and capital elasticities are only about a quarter to
a third of the computed residual factor share. These results are somewhat surprising, because the
control function is specifically designed to address omitted variable bias in the OLS. If the OLS
suffers from omitted variable bias, and the control function estimator corrects for it, then we would
expect a wedge between the OLS and the control function estimates. Rather, they seem to almost
perfectly coincide. The result indicates that either (i) both the OLS and the control function esti-
mator are consistent, or (ii) the control function estimator fails to neutralize the transmission bias
that leads to bias in OLS.

If we believe transmission bias is a concern, we thus conclude from Figure 1 that unobserved
output price heterogeneity leads to bias in both the OLS and the control function estimates. Moti-
vated by precisely the same concern, Klette & Griliches (1996) propose a structural solution to the
missing data problem. Klette & Griliches (1996) assume that a representative consumer aggregates
individual varieties with a CES demand function and that firms engage in monopolistic competi-
tion. Under these assumptions firm-specific prices can be substituted with the inverse demand
function, yielding

R f t = Q f tP f t = Qρ

f tB
1−ρ

t ϒt (6)

where Bt and ϒt are the CES quantity and price indices respectively, and ρ < 1 is a parameter that
governs the substitutability of varieties within the industry, with constant price elasticity of demand
η = 1/(ρ − 1) < −1. Note that the assumption of a single representative consumer implies that
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firms charge the same per-unit price for all units sold. In this case, the estimation equation becomes

r̃ f t ≡ ln

(
R f t

Λt

)
= ργ

0 +ργ
mm f t +ργ

ll f t +ργ
kk f t +

1
2

ργ
mm (mm) f t +

1
2

ργ
ll (ll) f t

+
1
2

ργ
kk (kk) f t +ργ

mk (mk) f t +ργ
ml (ml) f t +ργ

lk (lk) f t +ρω f t +(1−ρ) lnBt , (7)

assuming that Λt = ϒt .
Klette & Griliches (1996) discuss how to build a proxy for lnBt from industry-level price

indices and estimate (7) using dynamic panel methods. De Loecker (2011) extends the model
to allow for flexible Markov process in the evolution of productivity, and estimates via the con-
trol function method. The demand side parameter ρ is identified from time series variation in
lnBt . In the case that demand can be represented with a single representative agent with a CES
utility, the moment conditions exploited in the control function method of De Loecker (2011)
hold. Given enough time series variation in lnBt , the structural parameters β r ≡ ργr for r ∈
{m, l,k,mm, ll,kk,mk,ml, lk} and β D ≡ 1−ρ can be identified. Then with an estimate of ρ , the γ

coefficients can be recovered, and RTS and factor returns can be estimated.
We augment the gross output control function estimator from Gandhi et al. (2020) with a proxy

for lnBt (see Appendix B), estimate, and report estimates of average RTS and output elasticities
by industry in Figure 2. Compared to Figure 1, wherein we make no correction for missing firm-
level prices, including the proxy for lnBt causes estimated RTS to become erratic. For 5 out of 10
industries, the estimated RTS are implausibly high or low, ranging from -4 to 9.14 The estimates
for RTS stem from implausible estimates of ρ . For 3 out of 10 industries, estimated ρ lie outside
of the 0 to 1 range. For those within the 0 to 1 range, the average ρ is 0.62, which translates into
an elasticity of substitution of 2.63, which is an extremely low estimate (in magnitude) compared
to estimates from the literature. As in Figure 1, estimated returns to capital are mostly implausibly
low, with one industry yielding negative returns and one industry yielding returns to capital greater
than 1. Estimated returns to materials are again mostly implausibly high, with one industry yielding
negative returns and three industries yielding returns to materials greater than 1.

In summary, treating deflated revenues as the outcome variable mechanically leaves firm-
specific price deviations for the error term. For differentiated-good markets, we would expect
the unobserved prices to generate transmission bias. At first glance, the estimated returns to scale
and output elasticities seem plausible, but when compared to the raw data, the estimated capital
elasticities seem implausibly low, and estimated material elasticities seem implausibly high. Using
the structural approach of Klette & Griliches (1996) and De Loecker (2011) does not yield more

14We omit Food, Beverage, and Tobacco and Rubbers and Plastics from the Figure for ease of viewing. The
estimated RTS for Food, Beverage, and Tobacco is 9.05 and Rubbers and Plastics is -4.20. For σK , we have 1.38 for
Food, Beverage, and Tobacco and -.39 for Rubbers and Plastics.
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Figure 2: Estimates of the Klette and Griliches model in the French Data
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Notes. The figure reports average estimated returns to scale (RTS) and output elasticities to capital (σK), materials
(σM), and labor (σL). Black X’s plot the average input expenditure in revenues for materials and labor and the average
factor share residual for capital.

plausible estimates. In fact, augmenting the model with a single industry-wide quantity index leads
to erratic results.

In the rest of the paper, we develop a novel approach to controlling for unobserved output prices
that overcomes the problems demonstrated above in standard approaches, which leverages a key
feature of modern economies: firms sell in multiple markets.

3 Model

We specify a model in which heterogeneous single-product firms engage in monopolistic compe-
tition across horizontally differentiated varieties on multiple destination markets. The model is
in partial equilibrium, as we seek only to link firm-level output to firm-level inputs and demand
shifters. Closing the model would not alter estimation in any way, and hence we take the demand
side of the model as exogenous. The model delivers an estimation equation for the production
function and demand curvature, as well as a data generating process for Monte Carlo simulations.
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3.1 Demand

There are a fixed number of destination markets indexed by d ∈ {1, ...,D}, origin markets indexed
by o ∈ {1, ...,D}, and industries indexed by i ∈ {1, ...,I }. In each destination market a represen-
tative consumer aggregates consumption in two tiers. In the top tier, the consumer aggregates over
industry-level consumption bundles with a flexible utility function:

Ud
t =Ud

t
(
Bd

1t ,B
d
2t , ...,B

d
I t
)
, (8)

where t indexes time. Within a generic industry i, consumers aggregate over varieties f produced
in country of origin o with a CES structure:

Bd
it =

[
∑
o

∑
f∈Θod

it

(
Xod

f t

)ρi
exp(εod

f t +uod
f t )

]1/ρi

, (9)

where Xod
f t is the quantity consumed of variety f in destination d sourced from o in time t, εod

f t is
an ex ante variety-specific demand shock (realized prior to production), uod

f t is an ex post variety-
specific demand shock (realized at the point of sales), Θod

it is the set of varieties in industry i shipped
from origin o to destination d in year t, with constant price elasticity of demand ηi = 1/(ρi −1)<
−1. The CES price index at the industry level is defined in the usual way:

ϒ
d
it =

[
∑
o

∑
f∈Θod

it

(
Pod

f t

) ρi
ρi−1 exp

(
1

1−ρi

(
ε

od
f t +uod

f t

))] ρi−1
ρi

(10)

where Pod
f t is the price of variety f sourced from o that is paid by consumers in destination market

d at time t.
The representative consumer’s objective is to maximize her utility (8) given her budget con-

straint. The CES structure yields an expression for expenditures Rod
f t on each variety f in destina-

tion d:

Rod
f t =

(
Xod

f t

)ρi ϒd
it(

Bd
it
)ρi−1 exp(εod

f t +uod
f t ). (11)

Given the empirical applications we consider, we make two notational simplifications. First,
as we perform our analysis industry-by-industry, we drop the industry index i. Second, we assume
that researchers only observe varieties and firms coming from a single origin country, which we
refer to as o = 1. Hence, we drop the o index from now on.
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3.2 Production

Firms produce a single differentiated variety which they may ship to many destination markets.
To serve a given market, firms must pay a firm-destination-year specific fixed cost Cd

f t and a
destination-specific ad valorem “iceberg” cost τd

t ≥ 1. For simplicity, we assume that there are
no domestic fixed costs, so that C1

f t = 0. This ensures that all firms sell on the domestic market.
We also normalize to 1 the iceberg cost to sell on the domestic market. To sell Xd

f t units to destina-
tion market d, firm f must produce Qd

f t = τd
t Xd

f t units. At each period t, the sum of all units sold
to all destination markets must equal total output: ∑d Qd

f t = Q f t .
Firms produce outputs using flexible inputs (written in logs) vvv f t = (v1

f t ,...,v
V
f t) and quasi-fixed

inputs (written in logs) κκκ f t = (κ1
f t ,...,κ

K
f t ). Flexible inputs are chosen optimally each period given

input prices (in levels) WWW t = (W 1
t , ...,W

V
t ). Quasi-fixed inputs (such as capital) evolve each period

according to the depreciation rate and an endogenous investment choice. For each quasi-fixed input
κ j, we have

exp(κ j
f t) = (1−ρ

j)exp(κ j
f t−1)+ ι

j
f t−1, (12)

where ρ j denotes the rate of depreciation and ι
j
f t−1 is the investment choice in period t −1.15

Quantity produced is a deterministic function of a Hicks-neutral productivity shock ω f t and a
twice continuously differentiable transformation of variable and quasi-fixed inputs F (·), as in (2).

3.3 Optimization

The firm solves a combinatorial discrete choice problem each period in which it chooses a vector
that indicates which markets to serve III f t = (I1

f t , ..., I
D
f t )—where Id

f t is an indicator that equals 1
if firm f serves market d in year t and equals 0 otherwise—a vector of destination-specific out-
put shares χχχ f t = (χ1

f t ,χ
2
f t , ...,χ

D
f t ), and a vector of flexible inputs vvv f t to maximize expected profits,

given flexible input prices, quasi-fixed inputs, fixed and iceberg trade costs, and market-specific de-
mand conditions. The firm takes expectations over ex post demand shocks ud

f t , which are assumed
to be i.i.d. with a constant mean u and variance σ2

u , that are both known to the firm.16

15We later entertain the case of inputs that evolve in a more general manner (with partial adjustment).
16As in Gandhi et al. (2020), ex post shocks are necessary to rationalize variation in input expenditure shares across

firms. Whereas Gandhi et al. (2020) assume that these shocks are i.i.d. draws from the same distribution function with
constant mean within a market, we extend this assumption to the multi-market context.
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Using (11), we write the optimization problem as

max
III f t

max
χχχ f t ,vvv f t

L = E

[
exp(ρω f t)F(vvv f t ,κκκ f t)

ρ
∑
d

(
χ

d
f t

)ρ

Dd
t exp(εd

f t +ud
f t)

]

− ∑
j

exp(v j
f t)W

j
t +λ f t

(
1−∑

d
χ

d
f t

)
−∑

d
Id

f tC
d
f t , (13)

where Dd
t ≡ϒd

t
(
Bd

t
)1−ρ (

τd
t
)−ρ is a destination-industry-specific demand shifter, and λ f t is the La-

grangian associated to the constraint ∑d χd
f t = 1. We ignore for simplicity the additional constraints

χd
f t ≥ 0 for all d, with the understanding that χd

f t > 0 whenever Id
f t = 1.

We first solve for the optimal χχχ f t and vvv f t , given a set of destinations, Ω f t , that are served
with strictly positive quantities. Assuming monopolistic competition implies that firms take price
indices as given. First order conditions yield, for each destination d ∈ Ω f t ,

E [exp(u)]
(
Q f t
)ρ

ρ

(
χ

d
f t

)ρ−1
Dd

t exp(εd
f t) = λ f t (14)

and for each flexible input v j

ρ exp(ρω f t)E [exp(u)]

[
∑

d∈Ω f t

(
χ

d
f t

)ρ

Dd
t exp(εd

f t)

](
F(vvv f t ,κκκ f t)

)ρ−1 ∂F(vvv f t ,κκκ f t)

∂ exp(v j
f t)

=W j
t , (15)

given E
[

exp(ud
f t)
]
= E

[
exp(u)

]
, a constant, for all firms and destinations.

For any two markets d and d′ served by firm f , we have from (14)

χ
d
f t = χ

d′
f t

[Dd′
t exp(εd′

f t )

Dd
t exp(εd

f t)

] 1
ρ−1

. (16)

Summing over destinations and rearranging yields the optimal quantity share for any destination
market d served by firm f

χ
d
f t =

(
Dd

t exp(εd
f t)
) 1

1−ρ

∑z∈Ω f t

(
Dz

t exp(εz
f t)
) 1

1−ρ

. (17)

Plugging the last equation into (15) we get

ρ exp(ρω f t)E [exp(u)]

[
∑

d∈Ω f t

(
Dd

t exp(εd
f t)
) 1

1−ρ

]1−ρ (
F(vvv f t ,κκκ f t)

)ρ−1 ∂F(vvv f t ,κκκ f t)

∂ exp(v j
f t)

=W j
t . (18)

This is a system of V equations with V unknowns. A sufficient condition for a unique interior
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solution is that F (·) is concave in each flexible input.
Next, firms choose the set of destinations that maximizes total expected profits over all possible

sets. Unless marginal costs in terms of variable inputs are constant, this is a combinatorial discrete
choice problem.17 We can write the optimal vector of indicators for market entry by firm as

III f t = I
(
ω f t ,εft,κκκ f t ,Cft,Dt,Wt

)
(19)

to stress that each indicator depends on the firm-specific productivity ω f t , quasi-fixed inputs κκκ f t ,
the entire vector of destination-industry market potentials Dt (note that τdt is subsumed in Ddt),
the vector of input prices Wt, and each firm’s entire vector of fixed costs Cft and vector of ex ante

demand shocks εft. The optimal input demand and the quantities sold on each market are implicit
in the solution for the optimal III f t .

Given the optimal Q f t , destination-specific prices can be found using (11) and (17)

Pd
f t = τ

d
t
(
Q f t
)ρ−1

(
∑

z∈Ω f t

(
Dz

t exp(εz
f t)
) 1

1−ρ

)1−ρ

exp(ud
f t). (20)

Hence, prices vary across destinations within the firm both due to variable trade barriers (τd
t ) and

because of firm-destination demand heterogeneity (ud
f t). Firm-destination markups can be com-

puted as the ratio of prices to marginal cost, the latter being equal to expected marginal revenues
on any given destination. This yields

µ
d
f t =

exp(ud
f t)

ρE [exp(u)]
. (21)

Hence, like prices, markups vary across firms and across destinations within the firm because of
firm-destination demand heterogeneity.

17One can either solve the combinatorial problem by computing the expected profits for each possible set, or,
under certain conditions, by employing an efficient algorithm as in Arkolakis & Eckert (2017). The algorithm of
Arkolakis & Eckert (2017) requires either decreasing or increasing differences in the extensive margin of exports. If
the production function output elasticities and overall return to scale are “relatively stable”, or Cobb-Douglas type, then
with a constant demand elasticity we can satisfy the necessary conditions for the algorithm (either for complementarity
or substitutability across destinations). With a general production function, we cannot ensure that these conditions
hold, though we do not require these conditions for our estimation.
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3.4 Estimation equation

Plugging in the solution (17) for χd
f t into total revenues and taking logs, we have

r f t = ρω f t +ρ f (vvv f t ,κκκ f t)+(1−ρ) ln
[

∑
d∈Ω f t

(
Dd

t exp(εd
f t)
) 1

1−ρ

]
+ lnψ f t , (22)

where the set Ω f t represents the optimal choice of entry III f t from (13) and where the last term of
(22) is the log of a weighted average of ex post demand shocks, with ψ f t ≡ ∑d∈Ω f t

χd
f t exp(ud

f t).
The second to last term of (22) is the firm-specific demand shifter. It depends on the set Ω f t ,

aggregate industry-destination demand shifters Dd
t and firm-destination specific demand shocks

εd
f t , which are both observed by the firm before making production decisions. Hence, the term

affects input decisions and must be controlled for to avoid transmission bias.
Rather than building a proxy for this demand shifter—which would be quite demanding from

a data perspective—we exploit the first order conditions. Since all firms serve the domestic market
d = 1 (given C1

f t = 0), first order conditions (14) imply, for any destination d served by a firm f ,

Rd
f t

R1
f t
=

(
Dd

t exp(εd
f t)

D1
t exp(ε1

f t)

) 1
1−ρ exp(ud

f t)

exp(u1
f t)

. (23)

Rearranging and summing over destinations yields

∑
d∈Ω f t

(
Dd

t exp(εd
f t)
) 1

1−ρ exp(ud
f t) =

(
D1

t
) 1

1−ρ exp

(
ε1

f t

1−ρ
+u1

f t

)
∑

d∈Ω f t

Rd
f t

R1
f t
. (24)

Using the definition of ψ f t and rearranging yields

∑
d∈Ω f t

(
Dd

t exp(εd
f t)
) 1

1−ρ

=
(
D1

t
) 1

1−ρ exp

(
ε1

f t

1−ρ
+u1

f t

)
R f t

R1
f t

1
ψ f t

. (25)

Plugging this expression back into (22), we obtain our estimation equation

r f t = lnD1
t +ρ f (vvv f t ,κκκ f t)+(1−ρ) lnD f t + ε

1
f t +(1−ρ)u1

f t +ρω f t + lnψ f t . (26)

with
D f t ≡

R f t

R1
f t

1
ψ f t

. (27)

With this substitution, we split the endogenous demand shifter into an aggregate component D1
t

that can be absorbed into time fixed effects, and a firm-specific component D f t that depends only
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on observable data (the domestic sales share R1
f t/R f t ) and the weighted average of ex post demand

shocks—which can be estimated from the data, as we demonstrate below. The last four terms of
(26) collect unobserved shocks to productivity, ex ante domestic demand shocks (ε1

f t), and ex post

demand shocks.

4 Empirical strategy

We base our estimator on the two-step factor shares approach of Gandhi et al. (2020). In their
main text, Gandhi et al. (2020) treat the case in which outputs are denominated in quantity; but
in Appendix O6-4, they consider the “revenue production function”, i.e. the case in which out-
puts are denominated in value. The primary difference between our estimation and theirs is that
we allow firms to serve multiple destination markets on which they face heterogeneous demand
conditions. We also present alternative estimation strategies based on the more popular control
function approach, although we prefer the factor shares approach for reasons we discuss below.

4.1 Multi-market estimator: first step

In the first step output elasticities with respect to flexible inputs are identified from projecting factor
expenditure shares on logs of input levels. The estimation equation is derived from the first order
conditions for flexible inputs. When outputs are denominated in value these elasticities include the
demand-side parameter ρ .18

We combine (22) with (18) and obtain the cost share in revenue of flexible input v j

lns j
f t = ln

[
exp(−E [ln(ψ)])E [exp(u)]β j

f t(vvv f t ,κκκ f t)
]
+ϕ f t (28)

where we define s j
f t ≡W j

t exp(v j
f t)/R f t , where β

j
f t (·)≡ ρσ

j
f t (·)≡ ρ

∂F(vvv f t ,κκκ f t)

∂ exp(v j
f t)

exp(v j
f t)

Ff t
denotes the

output elasticity of flexible input v j multiplied by ρ , or the “revenue elasticity” of input v j, and
where ϕ f t ≡ E [ln(ψ)]− ln

[
ψ f t
]
. We add and subtract the constant E [ln(ψ)] because E

[
lnψ f t

]
̸=

0 due to Jensen’s inequality.19

To operationalize the estimator, we follow Gandhi et al. (2020) in approximating β
j
f t (·) with

a complete polynomial function of degree 2 in all inputs. We estimate β
j
f t (·) by NLLS for each

18In general, the “revenue elasticities” of flexible inputs are identified from the factor share regressions as long as
the markup does not depend on input levels (and as long as the orthogonality condition discussed below is met). But
this does not require that markups are fixed. Markups may vary over time and across firms in our model because of ex
post demand shocks.

19In the single-market case, the residual ϕ f t is simply the single ex post demand shock −u f t , which is mean zero
and exogenous by assumption.
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flexible input v j:

min
ggg jjj

∑
f

∑
t

{
lns j

f t − ln

(
g j

0 + ∑
z∈{v1,...,vV ,k1,...,kK }

g j
zz f t

+ ∑
ℓ∈{1,...,V }

∑
z∈{vℓ,...,vV ,k1,...,kK }

g j
vℓzv

ℓ
f tz f t + ∑

ℓ∈{1,...,K }
∑

z∈{v1,...,vV ,κℓ,...,κK }
g j

κℓzκ
ℓ
f tz f t

)}2

(29)

where all the g j coefficients include the constant exp(−E [ln(ψ)])E [exp(u)]. To purge this con-
stant from the g j coefficients we compute

̂exp(−E [ln(ψ)])E [exp(u)] =
1
N ∑

f
∑
t

exp(−ϕ̂ f t) (30)

where N is the number of firm-year observations and ϕ̂ f t is the residual from (29).20 We then
divide all g j coefficients by this constant and compute

β̂
j
f t(vvv f t ,κκκ f t) = ĝ j

0 + ∑
z∈{v1,...,vV ,k1,...,kK }

ĝ j
zz f t + ∑

ℓ∈{1,...,V }
∑

z∈{vℓ,...,vV ,k1,...,kK }
ĝ j

vℓzv
ℓ
f tz f t

+ ∑
ℓ∈{1,...,K }

∑
z∈{v1,...,vV ,κℓ,...,κK }

ĝ j
κℓzκ

ℓ
f tz f t (31)

Identification of equation (29) requires orthogonality between ϕ f t and all variable and quasi-
fixed inputs. In the multi-market case, it is not a priori obvious that this condition holds, since the
weights χd

f t are potentially endogenous to input choices. Nevertheless, we have

Proposition 1. E
[
ϕ f t |vvv f t ,κκκ f t

]
= 0, hence, the share regression (29) identifies the revenue elastic-

ity of flexible input v j, β
j
f t , and the residual ϕ f t .

Proof: see Appendix A.

The key to the proof is that even though the destination weights χd
f t are endogenous to input

choices, the weights are orthogonal to the realized demand shocks ud
f t . Hence, by the law of

iterated expectations, E
[

∑d∈Ω f t
χd

f t exp(ud
f t)
]
= E [exp(u)], a constant, and ϕ f t is orthogonal to

input choices.

20Since (30) calls for the use of the exponential function, the estimate of ̂exp(−E [ln(ψ)])E [exp(u)] may be sensitive
to the presence of extreme outliers. In the French data, we exclude any firm that ever has a material expenditure share
or a labor expenditure share greater than 20 or less than 0.001. This restriction excludes less than 0.1% of the data.
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4.2 Multi-market estimator: second step

The second step of the procedure is to use the information from the first step to recover the rest
of the production function. The basic insight from Gandhi et al. (2020) is that the flexible input
elasticity defines a partial differential equation that can be integrated to compute the part of the
production function related to each flexible input j.

By the fundamental theorem of calculus, for each flexible input v j,

∫ v j
f t

v j
0

β
j
f t(vvv f t ,κκκ f t)dv j

f t = ρ f (vvv f t ,κκκ f t)+ρC j
(

v1
f t , ...,v

j−1
f t ,v j+1

f t , ...,vV
f t ,κ

1
f t , ...,κ

K
f t

)
(32)

where v j
0 is the minimum possible value of flexible input v j and C j (·) is a constant of integration

that depends on all quasi-fixed inputs and all flexible inputs except for input v j. As noted in
Appendix O6-3 of Gandhi et al. (2020), these differential equations can be combined to construct
the production function up to a constant that depends only on predetermined inputs (also see Varian
1992, pages 483-484).21

Substituting this expression of the production function into (26), we compute revenues net of
the contribution of flexible inputs and ϕ̂ f t :

r̃ f t ≡ r f t −
∫ v1

f t

v1
0

β
1
f t(z

1,v2
0, ...,v

V
0 ,κ1

f t , ...,κ
K
f t )dz1

− ...−
∫ vV

f t

vV
0

β
V
f t (v

1
f t ,v

2
f t , ...,z

V ,κ1
f t , ...,κ

K
f t )dzV + ϕ̂ f t . (33)

We then transform (26) into

r̃ f t = αt +β
D ln D̂ f t + ∑

j∈{1,...,K }
bκ jκ

j
f t + ∑

j∈{1,...,K }
∑

z∈{κ j,...,κK }
bκ jzκ

j
f tz f t

+ ε
1
f t +(1−ρ)u1

f t +ρω f t , (34)

where αt ≡ lnD1
t +ρE [ln(ψ)] collects industry-period terms, with ρE [ln(ψ)] carrying over from

the first-step estimation of ϕ̂ f t , D̂ f t ≡ (R f t/R1
f t)exp(ϕ̂ f t) proxies for the firm-specific demand

21Combining differential equations for each flexible input, we have

ρ f (vvv f t ,κκκ f t) =
∫ v1

f t

v1
0

β
1
f t(z

1,v2
0, ...,v

V
0 ,κ1

f t , ...,κ
K
f t )dz1 +

∫ v2
f t

v2
0

β
2
f t(v

1
f t ,z

2,v3
0, ...,v

V
0 ,κ1

f t , ...,κ
K
f t )dz2

+ . . .+
∫ vV

f t

vV
0

β
V
f t (v

1
f t ,v

2
f t , ...,z

V ,κ1
f t , ...,κ

K
f t )dzV −ρC

(
κ

1
f t , ...,κ

K
f t
)
.
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shock and identifies the demand-side parameter β D ≡ 1− ρ , and the term ρC
(

κ1
f t , ...,κ

K
f t

)
is

approximated by a complete polynomial function of degree 2 in quasi-fixed factors (last two terms
in the first line of (34)).

In equation (34), ω f t , ε1
f t , and u1

f t are all endogenous to D̂ f t both through the endogenous
choice of destinations and through realized sales in the domestic market. Additionally, if ω f t , ε1

f t ,
and u1

f t are persistent, then they correlate with all quasi-fixed inputs through the investment rule.
We assume that ω f t and ε1

f t evolve according to first order Markov processes and exploit timing
for identification.

In particular, we assume productivity ω f t follows an AR(1) process and depends on lagged
export participation indicator e f ,t−1, as in De Loecker (2013):

ω f t = hω f ,t−1 +µe f ,t−1 + ω̃ f t (35)

where h is a scalar and ω̃ f t represents an i.i.d. shock to productivity.22 The parameter µ indicates
the effect of lagged export participation on current productivity—the effect of “leaning by export-
ing” (LBE). The choice of LBE is used here only for illustration; our approach encompasses any
control variable in the Markov process. We further assume that the domestic ex ante demand shock
follows an AR(1) process with the same persistence parameter h,23

ε
1
f t = hε

1
f ,t−1 + ε̃

1
f t , (36)

where ε̃1
f t represents i.i.d. shocks to domestic demand. The assumption that productivity shocks

and demand shocks share the same persistence parameter h allows us to combine them into a
composite shock, in a similar fashion to De Loecker (2011) and Melitz & Levinsohn (2006): ν f t ≡
ε1

f t +ρω f t , which by assumptions (35) and (36) gives

ν f t = hν f ,t−1 +ρµe f ,t−1 +ξ f t , (37)

where ξ f t ≡ ε̃1
f t +ρω̃ f t +(1−ρ)u1

f t +h(1−ρ)u1
f t−1 is an MA(1) error term.

Substituting ν f t into (34) yields

r̃ f t = αt +β
D ln D̂ f t + ∑

j∈{1,...,K }
bκ jκ

j
f t + ∑

j∈{1,...,K }
∑

z∈{κ j,...,κK }
bκ jzκ

j
f tz f t +ν f t (38)

22De Loecker (2013) assumes a flexible first order Markov process, but with endogenous firm-specific demand
shocks we must impose linearity for estimation.

23Note that at this stage we make no assumptions on the evolution of εd
f t for d ̸= 1, i.e., on any other market that is

not the domestic one; we discuss below assumptions that may be required—but not necessarily—for identification.
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For any candidate vector
(

β D∗
,b∗

κ1, ...,b∗κK ,b∗
κ1κ1, ...,b∗κK κK

)
, we can compute

ν̂ f t +αt = r̃ f t −β
D∗

ln D̂ f t − ∑
j∈{1,...,K }

b∗
κ jκ

j
f t − ∑

j∈{1,...,K }
∑

z∈{κ j,...,κK }
b∗

κ jzκ
j
f tz f t , (39)

and then regress ν̂ f t +αt on ̂ν f ,t−1 +αt−1, the past exporting decision e f ,t−1 and time fixed effects,
and compute the residual ξ̂ f t

(
β D∗

,b∗
κ1, ...,b∗κK ,b∗

κ1κ1, ...,b∗κK κK

)
. We then build the following

moment conditions:

E


ξ̂ f t

(
β

D∗
,b∗

κ1, ...,b∗κK ,b∗
κ1κ1, ...,b∗κK κK

)


ln D̂ f ,t−2

κ1
f t
...(

κK
f t

)2




= 0 (40)

and minimize deviations from these moments by GMM.
At the true parameter values ξ̂ f t is orthogonal to all quasi-fixed inputs in period t. This is

because ξ̂ f t contains only period t innovations to productivity ω̃ f t and domestic demand ε̃1
f t , and

ex post domestic demand shocks u1
f t and u1

f ,t−1, none of which influence the investment decision in

period t−1. However, even at the true parameter values ξ̂ f t correlates with D̂ f t and D̂ f ,t−1 through
the endogenous set of destinations and through sales on the domestic market.24 Thus, to build the
objective function, we use ln D̂ f ,t−2, which is orthogonal to ξ̂ f t .

Finally, we compute ρ̂ = 1− β̂ D and the output elasticity for each quasi-fixed input κk:25

σ̂
k
f t =

1
ρ̂

(
∂ r̃ f t

∂κk
f t

+ ∑
j∈{1,...,V }

∂

∂κk
f t

[∫
β

j
f t(·)dv j

f t

])
(41)

and for flexible inputs

σ̂
j
f t = β̂

j
f t/ρ̂. (42)

We compute returns to scale as the sum of variable and capital output elasticities, and LBE as

24Recall that in order to build D̂ f ,t−1 we use realized domestic sales, which are directly affected by u1
f ,t−1.

25Assuming a second degree polynomial for both the first step and the second step yields

σ̂
k
f t =

1
ρ̂

(
b̂

κk +2b̂
κkκk κ

k
f t + ∑

j∈{1,..k−1,k+1,..,K }
b̂

κ jκk κ
j
f t + ∑

j∈{1,...,V }
ĝ j

κk v j
f t

+ 2 ∑
j∈{1,...,V }

ĝ j
κkκk v j

f tκ
k
f t + ∑

j∈{1,...,V }
∑

z∈{k1,...,kk−1,kk+1..,kK }
ĝ j

zκk z f tv
j
f t +

1
2 ∑

j∈{1,...,V }
ĝ j

v jκk v j
f tv

j
f t

)
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the point estimate on the export lag from the regression estimates of the Markov process, deflated
by ρ̂ . Since the second step uses estimated objects from the first step, we bootstrap the entire
two-step procedure to compute standard errors. The bootstrap procedure samples firms rather than
individual observations, which is akin to clustering standard errors by firm.

Before proceeding to alternative estimators, we discuss the source of identification of ρ in (40).
As mentioned earlier, the assumptions of the model imply that ln D̂ f ,t−2 is orthogonal to ξ̂ f t , so
the moment condition should hold. But what about relevance? Conditional on quasi-fixed inputs,
time fixed effects, and ̂ν f ,t−1 +αt−1, there are at least two explanations for the correlation between
ln D̂ f ,t−2 and ln D̂ f ,t .

First, persistence in the ex ante foreign demand shocks εd
f t , for d ̸= 1, yields correlation between

ln D̂ f ,t−2 and ln D̂ f ,t . To see this, consider two firms with the same evolution of ν f t (which includes
only domestic demand shocks ε1

f t) and quasi-fixed inputs, serving the same set of destinations Ω f t .
Suppose that the first firm has persistently higher draws for εd

f t for some d > 1 than the second
firm. The former firm will tend to earn a higher share of revenue from the export market than the
latter, and hence will tend to have higher ln D̂ f t in all periods.

The second mechanism that generates correlation between ln D̂ f ,t−2 and ln D̂ f t relies on per-
sistent firm-specific fixed costs of market entry. To see this, consider two firms with the same
evolution of ν f t and quasi-fixed inputs, but different fixed costs of reaching different markets. In
this case, the two firms will likely serve different markets. If these fixed costs are persistent, then
the two firms will be exposed to different aggregate shocks. Suppose that the first firm has lower
fixed costs compared to the second firm for serving a particular large foreign market. Then the
former firm will tend to earn more from exporting than the latter, all else equal, and thus will tend
to have a higher ln D̂ f t in all periods.26

While both these mechanisms give rise to a “relevant” moment condition that helps identifying
ρ , we do not need to make any assumptions, neither on what generates persistence, nor on their
relative importance.

4.3 Factor share method with no demand correction

When estimating production function parameters with data denominated in value, the vast majority
of researchers simply deflate firm-level revenues by the domestic price deflator and treat the result-
ing series as if they were quantities. Given our data generating process, only under the assumptions

26Alternatively, we could exploit a shift-share instrument instead of ln D̂ f ,t−2 in (40), where the weights would be
pre-period market shares for each firm and the shocks would reflect industry-destination-period demand Bt . However,
this would require knowledge of the entire destination network of each firm and measures of aggregate demand. We
prefer to use ln D̂ f ,t−2 as the instrument because it requires only knowledge of the domestic share in revenues and it
allows persistence in the εd

f t draws to contribute to the relevance of the instrument.
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that ρ = 1 and that firms sell only on the domestic market would deflating by the domestic price
index convert firm-level revenues into firm-level quantities. Rationalizing this common practice
therefore implies that firms produce homogeneous goods and sell only on one (domestic) mar-
ket. In this case, the conditions in Gandhi et al. (2020) would be met, and thus their factor shares
estimator could be applied.

However, in the case that goods are not perfect substitutes (ρ < 1) and firms sell on multiple
markets, then deflating revenues by the domestic price index and implementing the estimation
procedure from Gandhi et al. (2020) will lead to biased estimates of output elasticities and LBE
effects. To see this, we write the second step estimation equation of Gandhi et al. (2020) in our
notation, assuming that there are in fact multiple destination markets:

r̃NC
f t = α + ∑

j∈{1,...,K }
bκ jκ

j
f t + ∑

j∈{1,...,K }
∑

z∈{κ j,...,κK }
bκ jzκ

j
f tz f t

+ ε
1
f t +(1−ρ)u1

f t +ρω f t +β
D (lnD f t + lnB1

t
)
. (43)

with r̃NC
f t ≡ r̃ f t − lnΛ1

t , where Λ1
t is the empirical analogue to the true CES price index in the

domestic market, and α is a constant that absorbs the industry-specific normalization of the price
index.27 Inspecting (43), we see that both lnD f t and lnB1

t influence the residual ξ f t as constructed
in the second step from Gandhi et al. (2020). The aggregate term lnB1

t can be controlled for by
time fixed effects, but the firm-specific demand shifter lnD f t can not. Since lnD f t depends on
quasi-fixed input levels, failure to control for lnD f t implies a violation of the second step moment
conditions.28

The violation causes biases in ways that are hard to determine and likely depend on parameter
values. For example, lnD f t depends positively on quasi-fixed inputs, since higher quasi-fixed input
levels lead to lower marginal costs, higher marginal revenues, higher likelihood of exporting to any
given destination, and hence higher export share. Leaving lnD f t for the error term will thus tend
to generate upward bias in the b j coefficients (ignoring the bias stemming from lnB1

t ).29 But since
the true σ k

f t depends on b j terms and ρ (see equation (41)), the overall effect on σ̂ k
f t is not clear,

because implicitly setting ρ = 1 will tend to bias downward σ̂ k
f t . The two sources of bias work in

27In fact, even if there are multiple destination markets and only revenues are observed, the moment condition for
the factor shares first step NLLS from Gandhi et al. (2020) holds. Hence, the bias enters only in the second step. This
is because the empirical steps outlined in section 4.1 are exactly the same steps outlined in Gandhi et al. (2020), though
the interpretation of the estimated objects differs. The point of section 4.1 was to prove that the moment condition for
the NLLS holds even if there are multiple destination markets.

28Additionally, it is not possible for lnD f t to follow the same AR(1) as ε1
f t , since lnD f t depends inversely on ε1

f t .
So lnD f t cannot simply be absorbed into ν f t either.

29If there is only one quasi-fixed input that enters linearly in (43), then the bias is clearly positive. With multiple
quasi-fixed inputs and higher order terms and interactions, it is not clear that omitting lnD f t leads to upward bias in
all estimated b j terms.
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opposite directions, and we cannot determine which force dominates.30

4.4 Factor share method with a single-market correction

The few papers that explicitly address the value versus quantity distinction in the context of pro-
duction function estimation implement some version of the Klette & Griliches (1996) procedure
discussed in Section 2 (De Loecker, 2011; Grieco et al., 2016). We present the factor share ap-
proach to estimating this model that follows Appendix O6-4 in Gandhi et al. (2020).31

The first step NLLS estimation is exactly the same as in section 4.1, though the interpretation
of the estimated objects differs. Moreover, whether or not there are multiple destination markets,
the moment condition for this NLLS estimation holds (see footnote 27).

In the second step Gandhi et al. (2020) introduce a proxy for the CES quantity index, which
in their model is unique, because they posit only a single market. We call this aggregate quantity
Bproxy

t . Defining r̃KG
f t ≡ r̃ f t − lnΛt , where Λt is the empirical price index, the second step estimation

equation can be written as

r̃KG
f t = α +β

D lnBproxy
t + ∑

j∈{1,...,K }
bκ jκ

j
f t + ∑

j∈{1,...,K }
∑

z∈{κ j,...,κK }
bκ jzκ

j
f tz f t +ν

KG
f t (44)

where α absorbs the industry-specific price index normalization, and νKG
f t ≡ ρω f t +ε1

f t = hν f ,t−1+

ρµe f ,t−1 +ξ f t . For any candidate vector
(

β D∗
,b∗

κ1, ...,b∗κK ,b∗
κ1κ1, ...,b∗κK κK

)
, we can compute

̂
νKG

f t +α = r̃KG
f t −β

D∗
lnBproxy

t − ∑
j∈{1,...,K }

b∗
κ jκ

j
f t − ∑

j∈{1,...,K }
∑

z∈{κ j,...,κK }
b∗

κ jzκ
j
f tz f t , (45)

regress on ̂
νKG

f ,t−1 +α and e f ,t−1, compute the residual ξ̂ f t

(
β D∗

,b∗
κ1, ...,b∗κK ,b∗

κ1κ1, ...,b∗κK κK

)
and build the moment conditions

E


ξ̂ f t

(
β

D∗
,b∗

κ1, ...,b∗κK ,b∗
κ1κ1, ...,b∗κK κK

)


lnBproxy
t

κ1
f t
...(

κK
f t

)2




= 0. (46)

In the case that there is actually only one destination market (and the empirical price index and

30Since the moment conditions for the first-step NLLS holds regardless of the number of markets, the no demand
correction estimator should lead to a downward bias in the estimated elasticities for flexible inputs, simply because—
given the model—the revenue elasticity is inclusive of ρ < 1 (see equation (42))

31De Loecker (2011) uses control function method. Grieco et al. (2016) make structural assumptions (constant
returns to scale, CES production function) that simplify their estimator at the potentially high cost of generality.
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Bproxy
t are computed in a theory-consistent way, see Appendix B) we have Λt = ϒt/ϒ0 and Bproxy

t =

Bt/ϒ0, where ϒ0 captures the price index normalization. In this case, ξ̂ f t is orthogonal to quasi-
fixed inputs in period t because at the true parameter values ξ f t ≡ ε̃ f t + ρω̃ f t .32 Moreover, the
aggregate demand shifter lnBproxy

t is orthogonal to ξ̂ f t by assumption. Hence, the parameter β D is
identified by time series variation in industry-wide demand aggregates. Thus, in the case that there
is only one output market, this estimation procedure identifies the demand parameter ρ = 1−β D,
as well as all output elasticities.

However, in the case that there are, in fact, multiple destination markets into which firms select
endogenously, then the moment conditions (46) do not hold. To see this, re-write (34) after moving
the price index for the domestic market to the left hand side,

r̃KG
f t = ρE[lnψ]+β

D lnBproxy
t + ∑

j∈{1,...,K }
bκ jκ

j
f t + ∑

j∈{1,...,K }
∑

z∈{κ j,...,κK }
bκ jzκ

j
f tz f t

+ ε
1
f t +(1−ρ)u1

f t +ρω f t +β
D lnD f t +β

D
(

lnB1
t − lnBproxy

t

)
. (47)

Multiple sources of bias arise in (47). First, unless lnD f t follows exactly the same AR(1)
process as ε1

f t and ω f t (which is not possible, given the model), then ξ̂ f t—as constructed via the
KG approach—includes lnD f t . Since lnD f t depends on quasi-fixed inputs, this implies a violation
of the moment conditions in (46). If Bproxy

t ∝ B1
t , i.e. measured without error, then the omission

of lnD f t from the estimation equation will tend to bias the estimator for all b j coefficients upward
and bias the estimator for β D downward, as lnD f t correlates positively with all quasi-fixed inputs,
and negatively with lnB1

t .33 However, even in this case, the effect on σ̂ k
f t is not clear, because σ̂ k

f t

depends directly on b j coefficients and inversely on ρ̂ . Given the preceding argument, we expect
all these coefficients to be biased upwards, which has thus an ambiguous effect on σ̂ k

f t .
34

Second, if there are multiple markets, then the demand shifter Bproxy
t is likely measured with

error. Gandhi et al. (2020) cite De Loecker (2011) for how to construct Bproxy
t from the data, who

proposes to set Bproxy
t equal to the weighted sum of deflated total revenues of domestic firms. We

show in Appendix B that if the price deflator is constructed in a theory-consistent way, then the
domestic quantity index B1

t can be constructed up to a normalization from price deflators and total

domestic absorption, i.e. total domestic sales of domestic firms plus total imports from foreign
firms. If, instead, Bproxy

t is constructed from total revenues of domestic firms (either using weights
32When all firms serve a single market, the ex post demand shock u f t is identified by the factor share regression in

the first step, and hence does not appear in the second step.
33As in the case of the no demand correction estimator, this holds if there is only one quasi-fixed input that enters

(47) linearly. If there are multiple quasi-fixed input that enter (47) along with higher order terms and cross terms, then
it is not clear in which direction the bias goes.

34Since the moment conditions for the first-step NLLS holds regardless of the number of markets, the KG estimator
should lead to a downward bias in the estimated elasticities for flexible inputs, simply because – given the model – the
revenue elasticity is inclusive of ρ < 1 (see equation (42))
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or not), then Bproxy
t will not be equivalent to B1

t , even up to a normalization. The difference between
the two is the trade deficit, which is relegated to the error term, multiplied by β D. The trade deficit
may be positively or negatively correlated with Bproxy

t , depending on whether local demand shocks
or foreign supply shocks dominate, which means that measurement error in Bproxy

t can lead to
violations of (46), and it may be difficult to predict in which direction the measurement error
biases estimates.

In light of these concerns, a tempting strategy would be to estimate the factor shares method
with a single-market correction for a set of non-exporters. For all non-exporting firms, D f t =

exp(−u1
f t) because all sales are domestic (R f t = R1

f t), and there are only domestic shocks (ϕ f t =

−u1
f t). In this case, although the error term in (34) follows an AR(1) process and lnD f t drops

out, bias persists for two reasons. First, Bproxy
t is still likely measured with error. Second, sam-

ple selection bias violates the orthogonality conditions in (46): the residual from the AR(1) does
not have a zero mean conditional on quasi-fixed inputs. If higher levels of quasi-fixed inputs are
associated with a greater probability to export (e.g., due to increasing returns to scale), then the
conditional mean of the residual will be negatively correlated with them because the sample never
admits exporters, and this innovation may induce a firm to export due to cross-market complemen-
tarities. The direction of the bias may vary according to different cross-market complementarities
and different returns to scale for variable inputs.

Whether estimating the KG model in the full sample or in a sub-sample of non-exporters,
two additional problems arise. First, identification in this model relies on time-series variation in
aggregate demand, which may not be sufficient in short panels. Second, given our application—the
productivity effects of learning by exporting—using the factor share method with a single-market
correction entails an additional conceptual issue: there is no exporting in a single market model.
Of course, the model can be estimated in the data, because in fact firms do export. But there
is a logical inconsistency in positing a single destination and then studying the effect of serving
different markets.

4.5 Control function method

The multi-destination model could also be estimated using an amended control function method,
which we specify in Appendix C. There are two reasons why we prefer the factor shares method.

First, the control function method relies on time series variation in material input prices for
identification. Gandhi et al. (2020) show that when input price variation is low, the control function
method is biased. This is because with low material price variation, the lag of materials is a weak
instrument for contemporaneous materials, conditional on productivity and capital. We replicate
this finding in Appendix E in Monte Carlo simulations for a single-market version of the model.
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Second, even when the sample size goes to infinity, the GMM objective function admits mul-
tiple solutions in the standard control function framework, as demonstrated recently by Ackerberg
et al. (2023). Ackerberg et al. (2023) argue that choosing among these candidate solutions is not as
simple as just choosing the parameter combination that yields the lowest objective function value.
This is because there are, in fact, multiple parameter vectors for which the moment conditions
are satisfied and the objective equals zero—among them the OLS parameter vector. Hence, the
optimization problem is under identified.35 Ackerberg et al. (2023) argue that additional moment
restrictions are necessary for identification in the control function method, and they propose a set
of such moments.

Our amended multi-market version of the control function method may be less prone to the
weak instrument critique of Gandhi et al. (2020) because it introduces cross-firm variation in addi-
tion to the time series variation. This motivates us to estimate this amended version of the control
function method, in addition to the factor shares procedure that we develop. However, cross-firm
variation does not address the “weak moments” problem highlighted by Ackerberg et al. (2023).

5 Monte Carlo simulations

In this section, we study the consistency and finite sample properties of the different estimators
presented in Section 4 using Monte Carlo simulations. We first simulate the multi-destination
model from Section 3. With these simulated data, we then estimate output elasticities, the curvature
of the demand function and LBE using three versions of correction for demand: one that features
our multi-market demand correction, another with a demand correction for only one market, and
one with no demand correction. In all three cases we employ both the factor shares and the control
function estimation approaches. With multiple destination markets and a short panel, only the
factor shares multi-market model should be consistent.

For the data generating process, we impose that firms produce with a Cobb-Douglas production
function with one flexible input, materials (M), and one quasi-fixed input, capital (K):

Q f t = exp
(
ω f t
)

MγM
KγK

(48)

with γM = 0.8 and γK = 0.3. We draw initial capital stocks K f ,1 ∼ U(1,201), initial productivity
shocks ω f ,1 ∼ N(0,0.01), and initial ex ante demand shocks εd

f ,1 ∼ N(0,0.0009). We let ω and
ex ante demand shocks for the domestic market (d = 1) update according to the same AR(1)
process described in (35) and (36), with h = 0.8 and where the innovations ω̃ f t ∼ N(0,0.01) and

35It is well known that nonlinear estimation like GMM can be sensitive to initial values as well as searching algo-
rithms (Knittel et al., 2014). As shown by Ackerberg et al. (2023), the problem with the control function method is
more severe than mere numerical challenges.
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ε̃1
f t ∼ N(0,0.0009). Foreign ex ante demand shocks are unconstrained in their evolution. We draw

ex post demand shocks ud
f t ∼ N(0,0.0009).

We simulate 100 samples of a single industry with 2,000 firms over 6 periods. In order to
keep the computational burden manageable, we posit 4 destination markets. Destination-specific
industry-wide expenditures and quantity indices are drawn randomly each period, along with ho-
mogeneous (across firms) material input prices.

Fixed costs of reaching the foreign markets rationalizes heterogeneous participation in the ex-
port market. There are no fixed costs of serving the domestic market, whereas fixed costs of entry
to foreign markets are drawn from a log normal distribution with mean 6 and standard deviation
0.6. Taking expectations over the ex post demand shocks ud

f t , firms choose the combination of
destinations that yields the highest expected profits.

We simulate the model period by period. In the first period, we solve for the set of destinations
that maximizes expected profits for each firm. From these values, we determine who is active
on the export market. We then update firm productivity for period 2 (which includes the LBE
effect), setting the learning-by-exporting coefficient µ = 0.1. Given ω f ,2 and K f ,2, we then solve
the combinatorial problem for each firm in period 2. We again determine which firms are active
on the export market in period 2, and update firm productivity accordingly. We continue in this
fashion until the final period.

We estimate in each sample of simulated data the three model versions with both the factor
shares approach and the control function approach assuming that researchers observe R f t , M f t ,
K f t , W M

t , Bt , ϒt and export revenue shares (R f t − R1
f t)/R f t . We use a common practitioners’

approach to choosing initial conditions for the nonlinear optimizations, based on OLS.36

In Section 2 we presented results that use the control function method and OLS to estimate
the production function. In the French data, we found that the control function with no demand

36For the factor shares model, we set initial conditions for the first-step NLLS estimation for M based on an OLS
estimation of the regression

ln(W m
f t M f t/R f t) = gm

0 +gm
mm f t +gm

k k f t +gm
mmm f tm f t +gm

kkk f tk f t +gm
mkm f tk f t +ϑ f t ,

where ϑ f t is a regression residual. For the second step GMM, we set initial conditions based on an OLS estimation of
the regression

r̃ f t = gkk f t +gkkkk f t +gD lnD f t +δt +ϑ
′
f t ,

where ϑ ′
f t is a regression residual and D f t is defined in (27).

For the control function approach, we set initial conditions for the second-step GMM based on an OLS estimation
of the regression

r̃CF
f t = g0 +gD ln(R f t/R1

f t)+gm
mm f t +gm

k k f t +gm
mmm f tm f t +gm

kkk f tk f t +gm
mkm f tk f t +ϑ

′′
f t ,

where r̃CF
f t represents log revenues net of the residual from the control function first step, and ϑ ′′

f t is a regression
residual.
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correction yields results that are extremely close to the OLS results and that both estimators yield
returns to scale close to one and returns to capital that are implausibly low. Here, with a known data
generating process, and we can examine whether this pattern could be an artifact of transmission
bias.

In Figure 3 we plot the distributions of the estimates of ρ , σK , σM, and µ across 100 repli-
cations for each version of correction for demand (multi-market, single market (KG), no demand
correction) using the control function approach along with the results using OLS. Averages and
medians of the distributions are reported below each sub graph. The true values are depicted with
black vertical lines.

Figure 3 exhibits the same pattern we found in the French data. We find that the control function
generates distributions of estimates of ρ and σM centered on 1, while distributions of estimates of
µ and σK are centered on or near 0, all of which are quite far from their true values. In fact,
nearly the entire distribution of estimates of ρ and σM (µ and σK) lies to the right (left) of the
truth. Combining estimates, these results imply constant returns to scale (σ̂M + σ̂K ≈ 1), with
implausibly low capital output elasticities (σ̂K ≈ 0), just as in the French data (see Figure 1). The
naïve OLS estimator (depicted in red) yields the same pattern, which also coincides with what we
found in the French data (Figure 1).37 These results echo the findings in Gandhi et al. (2020): the
control function leads to over estimates of σM and under estimates of σK .38

It is striking (1) how consistently the OLS results indicate constant returns to scale and implau-
sibly low capital output elasticities, and (2) how the control function estimates match the OLS,
both in the Monte Carlo experiments and in the French data. There are, in fact, explanations for
these two findings. First, for the case of Cobb-Douglas production, it is possible to solve an-
alytically for the expected values of σ̂M, σ̂K , and ρ̂ estimated by the OLS. Given (48), using
well-known results with respect to omitted variable bias (Wooldridge (2002), p. 61-63), we have
E
[
ρ̂σ̂M]= 1 , E

[
ρ̂σ̂K]= 0 , E [ρ̂] = 1 and hence E

[
σ̂M]= 1 , E

[
σ̂K]= 0 (see Appendix D

37The results from the KG control function model in Figure 3 look much less erratic than they do in Figure 2. This
is mostly because we estimate the model using the true, exogenous process for Bt , which is common to all firms and
across all replications, whereas in the data, Bt is measured with many sources of error.

38Given the poor performance of the control function estimators, one might be curious if there are any conditions
under which the control function recovers consistent estimates. Gandhi et al. (2020) demonstrate in the context of a
single-market homogeneous-good model that if there is a long panel (roughly 50 years) and a tremendous amount of
time series variation in material input prices (roughly 10 times the variation observed in the Chilean manufacturing
data), then the gross output control function generates estimates that are approximately centered on the true values
in Monte Carlo experiments. We replicate this result in Appendix E, wherein we test the performance of the control
function estimator when the true data generating process features a single-market differentiated-good model. Here,
a key finding is that the KG model estimated by control function performs well in finite samples only under the
conditions specified by Gandhi et al. (2020), and under the additional condition that the nonlinear optimization in the
second stage starts from the true underlying structural parameters. Even under the conditions specified by Gandhi
et al. (2020), if the nonlinear optimization starts from the OLS values, as would be the natural initial conditions when
estimating in the real data, the distribution of estimates is clearly biased.
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Figure 3: Finite Sample Properties in the Multi-Market Simulations, Control Function
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Notes. The figure reports the distribution of results from three control function estimators and the OLS across 100
simulations of the multi-market model with 2,000 firms each. True parameter values are depicted as vertical lines. The
first estimator controls for demand, accounting for multiple markets (“Multi-market”); the second includes a correction
for demand in a single market (“KG”); the third estimator makes no correction for demand (“No Demand Correction”).
Averages (“av”) and medians (“md”) of distributions for each estimator are reported below each sub-figure.

for derivations). This explains why the OLS tends to yield constant returns to scale and low capital
elasticities.

Second, following Ackerberg et al. (2023), we can show that
(
ρ,γM,γK) = (1,1,0) is one of

three solutions to the GMM optimization problem solved in the second stage of the control function
method (see Appendix D for derivations). The reason the control function tends to converge to this
solution as opposed to either of the other two (one of which is the true parameter vector) is that the
parameter grid search starts from the OLS result. This is why the control function results tend to
coincide with the OLS results, given a short panel.

Does the factor share approach perform any better? The answer depends on whether the model
is correctly specified. In Figure 4, we find that the model that makes no correction for demand
is heavily biased. The distribution of estimates of σM lies entirely to the left of the true value
(0.8), while the distribution of estimates of σK is clearly shifted to the right of the true value (0.3).
Estimates of LBE are significantly below the true value (0.1). This is the exact opposite pattern of
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the bias in the control function, but this pattern is consistent with the model as well. In this case,
the first stage regression from the factor shares estimator correctly identifies β M = ργM. This is
why the estimate for σM centers on 0.8 ∗ 0.8 = 0.64. In the second stage, the demand-side term
is omitted, which leads to an over-estimate of β K = ργK . Since ρ is implicitly set to 1 in this
estimator, we have β̂ K = γ̂K , hence γ̂K is overestimated as well.

When we control for a single (domestic) market aggregate demand index in the second stage
(i.e., the KG demand-side correction) the distributions of estimates are much closer to the true
parameter values than when we make no correction for demand—but the distributions are still
clearly off (dashed black lines in Figure 4): estimates of ρ are shifted to the left of the true value,
estimates of σM and σK are shifted to the right, and estimates of LBE are shifted slightly to the
right or the true values. Again, the bias comes in the second stage (demand proxies play no role in
the first order conditions, so the first stage factor share regression is correctly specified, regardless
of the data generating process). The domestic market aggregate demand index only controls for
part of the omitted variable bias. The firm-specific component of the demand shifter is omitted,
which generates transmission bias. The parameter on the domestic market aggregate demand index
is over estimated, which leads to an underestimate of ρ , which thereby leads to an overestimate of
σM and σK .

In contrast, when we control correctly in the second stage for firm-specific demand conditions
the factor share estimator generates distributions of estimates that are centered on the true parame-
ters (dashed blue line in Figure 4), with means and medians quite close to the true values. In Figure
5, we find that this multi-market factor shares estimator is consistent as well. Plotting the mean,
median and inter-quartile range of estimates of µ , ρ and returns to scale (σ̂K

f t + σ̂M
ft ) for increas-

ingly larger sample sizes, we find that as the sample size increases the distribution of estimates
increasingly narrows on the true values (indicated by dashed horizontal lines) for the multi-market
estimator, depicted in blue, but not for the estimator with no demand correction (“No D Corr”, in
red) nor the estimator with a single-market correction (“KG”, in black).

Lastly, we investigate inference with our estimator compared to the estimator that corrects only
for demand in a single market. We compute for each replication the bootstrapped 95% confidence
interval and investigate the proportion of replications in which the confidence interval contains the
true parameter value. In Figure F.4 , we plot the estimated value and the 95% confidence interval by
replication and parameter. Black dots indicate replications for which the 95% confidence interval
includes the true value, and red open dots indicate replications for which the 95% confidence inter-
val excludes the true value. As expected, our estimator’s 95% confidence intervals include the true
parameter value about 95% of the time. In contrast, Figure F.5 illustrates that the 95% confidence
intervals for the estimator with a single-market correction rarely include the true parameter.

Given the assumed data generating process and available data, only the multi-market factor
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Figure 4: Finite Sample Properties in the Multi-Market Simulations, Factor Shares
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Notes. The figure reports the distribution of results from three factor shares estimators across 100 simulations of the
multi-market model with 2,000 firms each. True parameter values are depicted as vertical lines. The first estimator
makes a correction for demand accounting for multiple markets (“Multi-market”) ; the second includes a correction for
demand in a single market (“KG”); the third estimator makes no correction for demand (“No Demand Correction”).
Averages (“av”) and medians (“md”) of distributions for each estimator are reported below each sub-figure.

shares estimator generates consistent estimates of the output elasticities, the curvature of the de-
mand function, and LBE in the Monte Carlo experiments. Control function and OLS estimators
are biased an inconsistent, and, in fact, look extremely similar to actual results from the French
data. In the next section, we investigate whether the multi-market factor shares estimator generates
more plausible estimates in the French data.

6 Application to French manufacturing

In this section we describe our data sources, report essential descriptive statistics, and then re-
port estimates of returns to scale, the elasticity of demand, the output elasticities of inputs, and
learning-by-exporting effects for French manufacturing firms. We report results for our multi-
market estimator, the single-market correction estimator, and the standard estimator that makes no
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Figure 5: Consistency Properties in the Multi-Market Simulations
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Notes. The figure reports the mean, median and inter-quartile range of three estimators across 100 simulations of the
multi-market model with 250, 500, 1,000 and 2,000 firms each. The true parameter values are depicted as horizontal
dashed lines. The first estimator is our multi-market estimator (blue); the second includes a correction for demand in
a single market(“KG”, black); the third makes no correction for demand (“No D Corr”, red). Means are denoted by
squares, medians are denoted by circles, and the inter-quartile ranges are denoted by the bars.

correction for demand—all based on the factor share approach. For the main results we assume
that labor is predetermined within the period. In Appendices H.2 and H.3, we discuss additional
results that assume a partial adjustment process for labor and results using the control function
method, respectively. While the former set of results serve as a robustness check for our main
results, the latter set is just for comparison, as we expect finite sample bias and weak moments
issues.

6.1 Data and descriptive statistics

We use administrative data sources to build a quasi-exhaustive panel of the universe of French man-
ufacturing firms in 1994–2016. Most of the data comes from firm balance sheets from the FICUS
and FARE datasets, which originate in firms’ tax declarations. We use total revenues, material
expenditures, employment, and book-value of capital stocks. We obtain information on firms’ ex-
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ports from the French Customs. It is straightforward to merge the customs data to FICUS/FARE
because they use the same firm-level SIREN identifier. We deflate expenditures on materials by
industry-level input price indices that we obtain from the EU KLEMS dataset. We build firm-level
capital stocks using the methodology of Bonleu et al. (2013) and Cette et al. (2015). Appendix G
provides further details on the data sets and explains how we construct firm-level capital stocks.

We report descriptive statistics in Table 1. The skewed firm size distribution is apparent from
the difference between means and medians, for example, in revenue and employment. This feature
is common in many manufacturing datasets. The high percentages of exporting firms is typical of
European economies, who trade intensively within Europe. On average, 25% of firms in our data
export at least once, but this varies considerably across industries, with a low of 6.6% in “Food,
beverage, tobacco”, and a high of 71% in “Chemical products”.

In Table 2 we report descriptive statistics for the export intensity among firms that export.
Within exporting firms, the export share also varies considerably, both across industries and across
firms within industries. While the median exporter obtains 4.2% of revenue from exporting, the
90th percentile firm obtains almost 40% of revenue from foreign markets.

Tables 1 and 2 make two important points. First, the fact that many firms export in addition
to serving the domestic market implies that estimation methods that assume that all sales are on
a single, domestic market ignore important information. In particular, building theory-consistent
demand aggregates for Bproxy

t in (44) is not feasible using only information from the domestic
market.39 Second, variation in the extensive exporting margin and the high variation in export
intensity among exporting firms jointly indicate that there is sufficient variation to identify ρ in
our setting, coming from, inter alia, the cross section of firms. This is in contrast to methods that
assume only one market, where only time series variation identifies ρ .

6.2 Main results

An important decision when taking the factor shares method to the data is whether to classify
inputs as flexible or predetermined. It is quite standard in production function applications to treat
capital as a quasi-fixed input and to treat materials as a flexible input. The treatment of labor varies
by application. Many applications in the developing world (e.g., Colombia, Chile, Mexico) treat
labor like a flexible input. Applications to developed-world data sometimes treat labor as a flexible
input, and sometimes treat it as a quasi-fixed input. Presumably, developed economies have stricter
labor market regulations, which makes it harder to adjust labor stocks to contemporaneous shocks.
With French data, researchers tend to treat labor as a quasi-fixed input (Harrigan et al., 2023). This
is the assumption that we adopt for our main specification. We investigate the sensitivity of the

39This, even before taking into account that the correct domestic market aggregate demand shifter should also
consider imports from foreign firms.
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results to the possibility that firms partially adjust labor to contemporaneous shocks; Appendix H.2
shows that this does not materially alter the main results.
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Table 1: Descriptive Statistics

Revenue Labor Materials Capital No. No. Percent
No. Industry (mn euros) (employment) (mn euros) (mn euros) Obs. firms exporters exporters

1 Autos and transport equipment Mean 44.33 144.55 27.78 18.37 50403 5507 2774 50.4
Median 1.01 10.00 0.39 0.21

2 Chemical products Mean 52.54 97.35 29.95 27.82 52047 4943 3510 71.0
Median 2.36 14.00 0.94 0.55

3 Computer, electronics Mean 11.04 59.99 5.04 4.80 52845 5736 3158 55.1
Median 0.79 8.00 0.26 0.12

4 Electrical equipment Mean 13.25 70.62 7.12 5.14 42476 4584 2321 50.6
Median 0.98 9.00 0.35 0.13

5 Food, beverage, tobacco Mean 3.11 12.74 1.81 1.21 884753 113119 7498 6.6
Median 0.24 3.50 0.08 0.10

6 Machinery and equipment Mean 3.78 22.65 1.73 1.01 323815 34802 11297 32.5
Median 0.55 5.00 0.17 0.09

7 Basic metal and fabricated metal Mean 4.46 27.28 1.93 2.23 352083 33769 12975 38.4
Median 0.82 9.00 0.16 0.24

8 Other manufacturing Mean 1.56 12.15 0.62 0.55 250297 30933 6584 21.3
Median 0.22 3.00 0.05 0.06

9 Rubber and plastic Mean 6.95 39.42 3.08 4.16 163847 16121 7006 43.5
Median 0.88 8.00 0.30 0.26

10 Textiles, wearing apparel Mean 3.31 24.42 1.41 0.98 149369 21384 9139 42.7
Median 0.49 6.00 0.14 0.08

11 Wood, paper products Mean 2.75 17.41 1.21 1.62 295484 32356 9789 30.3
Median 0.47 5.00 0.11 0.14

Total Mean 5.54 24.84 2.90 2.47 2617419 303254 76051 25.1
Median 0.38 5.00 0.11 0.11

Notes. The table reports descriptive statistics for the estimation sample, where capital is the book value reported by the firm and materials are expenditures.
Exporters are defined as firms that exported at least once during the sample. Source: FICUS/FARE datasets and French Customs.
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Table 2: Percent exports in revenue for exporters

No. Industry Mean p5 p10 p50 p90 p95

1 Autos and transport equipment 14.6 0.2 0.4 5.8 43.1 55.9
2 Chemical products 22.5 0.2 0.6 11.4 64.6 77.5
3 Computer, electronics 19.5 0.2 0.5 8.3 58.2 74.5
4 Electrical equipment 15.4 0.2 0.5 6.1 46.3 60.1
5 Food, beverage, tobacco 10.1 0.1 0.2 2.8 31.1 48.3
6 Machinery and equipment 12.4 0.1 0.3 4.1 38.8 57.1
7 Basic metal and fabricated metal 10.6 0.1 0.3 3.5 31.7 47.9
8 Other manufacturing 12.8 0.3 0.5 4.8 38.3 52.7
9 Rubber and plastic 11.4 0.1 0.2 3.7 35.7 52.2
10 Textiles, wearing apparel 17.8 0.4 0.8 9.4 48.5 62.2
11 Wood, paper products 7.8 0.1 0.2 1.6 23.8 41.9

Total 12.8 0.1 0.3 4.2 39.7 56.7

Notes. The table reports the distribution of the percent of exports in revenue for exporters in the estimation
sample. Percent exports in revenue for exporters is computed for firms and years in which exports are
positive. Source: FICUS/FARE datasets and French Customs.

Total Returns to Scale. We present estimates of total returns to scale (RTS) in the top left
panels of Figures 6 and 7. Detailed estimates are reported in Tables H.1, H.2, and H.3, where we
also report the persistence parameter h, the demand curvature parameter ρ , and the long run effect
of exporting µ/(1−h), as well as bootstrapped standard errors for all estimates.

We start with the estimator that makes no demand correction (red triangles). In Figure 6, we
find estimated total returns to scale slightly below 1 for most industries. The mean and median of
the industry-specific average returns to scale are both equal to 0.96. Bars represent 95% bootstrap
confidence intervals, which are quite tight in the case of the no demand correction model. These
estimates are close to what researchers tend to find with this approach. For example, in their factor
shares approach (deflating revenues by industry-wide price indices and interpreting as quantities)
Gandhi et al. (2020) find average returns to scale in Colombia between 0.99 and 1.06, and between
1.04 and 1.15 for Chile, and close to what we find using the control function method and OLS in
Figure 1. Hence, whether estimated by the factor share approach or the control function approach,
if we make no attempt to control for firm-specific prices, we end up with results that look very sim-
ilar to OLS estimates. This reinforces our argument that controlling for price variation is essential,
even if supply shocks are adequately controlled for.

Moving to the results from the multi-market estimator (depicted by blue circles), in the up-
per left panel in Figure 6 we find average total returns to scale that range from 1.05 (Electrical
equipment) to 1.22 (Wood, paper products), and for one industry up to 1.37 (Food, beverage, to-
bacco). The mean (median) estimate across the 11 industries is 1.15 (1.13), which in line with
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estimates in Antweiler & Trefler (2002), and is substantially higher than corresponding OLS es-
timates (Figure 1). As hypothesized by Klette & Griliches (1996), the constant returns to scale
estimated by the no demand correction model mask returns that are actually increasing (in our
notation, σM

ft +σL
f t +σ k

f t > 1).40

If the data generating process coincides with the multi-destination model from section 3, then
the KG single market correction estimator does not entirely address the transmission bias stemming
from missing output prices. But it remains to be seen how well the single market estimator from
Section 4.4 performs in practice. In the top left panel of Figure 7, it is clear that the answer is:
not very well. Estimates vary wildly across industries. We find that the average returns to scale
range from -2.4 (Rubbers and plastics) to 7.3 (Chemicals, omitted from the figure for ease of
viewing). For the KG estimator we find only three industries with plausible estimates for returns to
scale: Auto and transportation (1.07), Communication electronics (1.29), and Electrical equipment
(1.36). Estimated average returns to scale are implausibly high or implausibly low for all other
industries.41

The large range of estimates for returns to scale is largely due to the range of estimates of ρ .
Recall that the KG estimator uses the estimate of ρ to “deflate” the revenue elasticities. With the
KG estimator, we estimate a range for ρ from -0.64 to 1.48 across industries. When ρ is estimated
to be close to zero, then the returns to scale become very large in absolute value, as they do for
Chemicals. When the estimate of ρ is negative, this leads to negative estimates of returns to scale
(Rubbers and plastics and Other manufacturing). These extreme estimates of ρ are not merely due
to estimation uncertainty; the estimates are quite precise (see Table H.3 for bootstrapped standard
errors).

In Section 4.4, we show that both transmission bias and measurement error in Bproxy
t could bias

the KG factor shares estimator when the true data generating process features multiple destinations.
Even when the sign of the bias on estimated coefficients is clear, the sign of the bias on estimated
returns to scale is ambiguous, since estimated returns to scale is a nonlinear transformation of
estimated coefficients with biases of potentially different signs. Consistent with this, there is no
discernible pattern in the comparison of the estimated returns to scale with the KG estimator versus
the multi-market estimator.

The wide range of KG estimates of returns to scale is notable because we find much smaller
range of estimated returns to scale in the Monte Carlo experiments when using the KG estimator.

40Klette & Griliches (1996) argue that ignoring unobserved firm-specific prices would tend to lead to a downward
bias in estimated returns to scale, ceteris paribus. As we discuss in section 4.3, there are, in fact, several forces that
bias the estimator with no demand correction, and the overall sign cannot be determined in general. Nevertheless, the
evidence in the upper left panel of Figure 6 is consistent with the central hypothesis from Klette & Griliches (1996).

41The high and low estimates of average returns to scale is not just a matter of outlier observations either. Medians
within the industry are very close to the means.
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Figure 6: Factor Share Estimates by Industry
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Notes. The figure reports factor share estimates of average returns to scale, returns to materials, the demand curvature
η = 1/(ρ −1), and the LBE learning by exporting (LBE) parameter µ by industry and estimator. Bars represent 95%
bootstrap confidence intervals. Detailed estimates are reported in Tables H.1 and H.2. Confidence interval for Electric
Equipment has been suppressed for ease of viewing.

A likely explanation for the difference is that in the Monte Carlo simulations we assume the re-
searcher observes the true domestic quantity index B1

t . In the application we follow the common
practice to approximate B1

t using all of the firms’ revenues (not distinguishing exports and domestic
sales, nor adding imports) and use price indices built from producer prices in the domestic market.
These discrepancies highlight an additional, practical advantage for our multi-market estimator:
it does not require making such data compromises, as it does not require building B1

t , nor does it
require to deflate firm revenues.

Given the theoretical drawbacks of applying the KG estimator to a sample of multi-destination
firms, we can alternatively apply the KG estimator to a sample of never exporters, as discussed in
Section 4.4. In this case measurement error in Bproxy

t and selection bias could still lead to biased
estimates. Table H.4 reports results for the sample of non exporters, where we find very similar
results to the main KG estimates when we do not drop exporters (Table H.3). This suggests that
measurement error in Bproxy

t is likely the key driver of the wide range of estimates in the KG
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Figure 7: Factor Share Estimates by Industry, KG Model
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Notes. The figure reports factor share estimates of average returns to scale, returns to materials, the demand curvature
η = 1/(ρ −1), and the LBE learning by exporting (LBE) parameter µ by industry and estimator. Bars represent 95%
bootstrap confidence intervals. Detailed estimates are reported in Table H.3. Results for Chemicals in top row and
Autotransportation in bottom left have been suppressed for ease of viewing.

estimator. This is not surprising, since identification in the KG estimator relies on time series
variation in aggregate consumption, for which there are at most 21 observation per industry in
our sample. If this key variable is measured poorly—or does not vary much over time—estimates
should indeed vary substantially.42

In our preferred specification (Figure 6, blue circles) average returns to scale are greater than
1 for all industries. This indicates that there are efficiency gains from size embedded in the tech-
nology used by firms, regardless of how total factor productivity evolves. Our estimates imply that
returns to scale are increasing for virtually all firm-year observations, not just on average (Figure
H.6).43 From a welfare perspective, increasing returns imply a cost to diversification that weighs

42Recall that the measurement error is not classical, so the direction of the bias is not necessarily towards zero.
43Several mechanisms could explain this phenomenon. The simplest explanation for increasing returns to scale is

the presence of fixed costs of operation. Alternatively, complementarities within the firm could generate increasing
returns at any point along the firm-size distribution. For example, externalities across workers could lead to increasing
returns (e.g., learning by doing), as in, for example Kellogg (2011) and Hjort (2014).
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against love of variety, as hypothesized by Krugman (1979). In addition, increasing returns imply
larger business cycle fluctuations, and may provide a rationale for targeted interventions during
downturns.

Returns to flexible inputs. We now turn to estimates of returns to scale for flexible inputs
(VRTS), which, in the case that labor is pre-determined each period, are just the output elastic-
ity with respect to materials. The top right panel of Figure 6 reports averages across industries
by estimator. The mean (median) of the average estimates across industries is 0.34 (0.35) with
the multi-market estimator and 0.30 (0.30) with the no demand correction estimator. Notice that
the first step for both estimators is identical—but their interpretation differs. In the no demand
correction case, the first step identifies directly the output elasticity, whereas in the multi market
estimator the first step identifies the revenue elasticity with respect to materials, and must be di-
vided by ρ in order to obtain the output elasticity. Since ρ is estimated to be less than 1 when using
the multi-market estimator, the estimated output elasticity of materials is larger.

Returns to flexible inputs well below 1 imply negative cross-market complementarities in the
short-to-medium run. For example, a positive demand shock in one market leads to more sales
to that market, an increase in marginal costs, lower sales to other markets and a reduction in the
likelihood of selling to other markets. This is consistent with findings in Almunia et al. (2021),
who argue that the massive negative demand shock in Spain during the financial crisis caused an
increase in exporting, presumably due to a reduction in scale and in marginal costs.44

Variable returns to scale estimated via the single-market correction method (Figure 7) yield
implausibly large or even negative estimates, ranging from -0.79 (Rubber and plastic) to 2.53
(Chemical products, omitted from the Figure), with an average and median around 0.45. As noted
above, this variation is mostly due to variation in the estimates of ρ .

Elasticity of Demand. In the bottom left panel of Figures 6 and 7 we report estimates of the
price elasticity of demand η = 1/(ρ − 1). With the single-market correction estimator, most of
the demand elasticities fall within the range -4.14 to -0.6, which is a range that is mostly lower
(in magnitude) than what people tend to estimate in the literature. For example, using data on
trade flows and trade costs, Shapiro (2016) estimates an average trade elasticity across industries
of -8.16 (see Shapiro 2016, Table 2), which translates into a price elasticity of demand of -9.16.45

Additionally, with the KG method, we estimate a positive demand elasticity for Textile and Apparel
44Almunia et al. (2021) perform production function and productivity estimation, but when developing their esti-

mator they ignore cross-market complementarities. We explain how their estimator differs fundamentally from ours in
Appendix I.

45In Shapiro (2016), the trade elasticity is equal to 1 minus the elasticity of substitution across varieties, which is
equal to 1+η in our notation. The estimates from Shapiro (2016) can be interpreted as the demand elasticity under
the assumption of an Armington trade model.
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(η = 2.05), and a very high (in magnitude) demand elasticity for Autos and transport equipment
(-58.7).46

With the multi-market estimator, we estimate a range of demand elasticities from -21.5 (Chem-
icals) to -3.4 (Food, beverage and tobacco), with no implausible outlier estimates. The mean
(median) estimate across industries is -9.9 (-5.8), which is much closer to the mean and median
estimates that are typically estimated in gravity regressions (e.g., Shapiro 2016). Bootstrapped
standard errors are reported in Table H.1. Standard errors for η become extremely large as ρ ap-
proaches 1 (as in the case of electrical equipment). It is more instructive to look at the standard
errors for ρ . Here, the bootstrapped confidence interval is very small. For instance, we can easily
reject ρ = 1 for all industries, which validates our key assumption that manufacturing products are
differentiated.

Learning by Exporting. Finally, in the bottom right panels of Figures 6 and 7, we report
estimates of LBE effects by industry and estimator. With the multi-market estimator, we estimate
LBE effects in the range of -0.004 (Food, beverage and tobacco) to 0.040 (Textile and apparel). For
the two industries with very low estimated LBE effects (Food, beverage and tobacco and Rubbers
and plastics), we cannot reject zero effect; for all other industries, we do reject 0. Across all
11 industries, the mean (median) estimate of LBE is 0.017 (0.018). These estimates are lower
than the estimates with the no demand correction estimator (mean = 0.04 and median = 0.038)
and the single-market correction estimator (mean = 0.035 and median = 0.030). The comparison
suggests that estimated LBE effects are biased upward in the other estimators, possibly because
these estimators mistakenly attribute the effect of foreign demand shocks to LBE.

It is often stated in the literature that LBE effects are only found in developing-world firms.
With French manufacturing data, we find robust evidence of significant LBE effects, contrary to
this perception. With our multi-market procedure, our estimates translate into as much as 40%
long run cross-sectional differences in productivity between exporters and non-exporters (Table
H.1, last column).47 These estimates are quite precisely estimated, which is not surprising given
the high number of firm-year observations per industry. Compared to previous work, these effects
are smaller than those estimated via RCT with Egyptian firms (Atkin et al., 2017) and via struc-
tural approaches with Chilean, Colombian, and Mexican firms, e.g., (Garcia-Marin & Voigtländer,
2019), but larger than estimates from Danish firms using a quasi-natural experiment (Buus et al.,
2022).48

46We leave the estimate for Autos and transportation equipment out of Figure 7 for ease of reading.
47The long run, cross-sectional difference is computed as µ/(1− h), where µ is the effect of exporting today on

productivity tomorrow and h is the persistence parameter in the AR(1) process for productivity.
48The other notable comparisons in the literature is De Loecker (2013), who estimates LBE effects in the range of

0.017 to 0.066 across Slovenian manufacturing industries. Note that De Loecker (2013) does not correct for demand,
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7 Conclusion

Production function estimation is key to many economic analyses, but the conditions assumed in
theory rarely match those faced by applied researchers (De Loecker & Goldberg, 2014; De Loecker
& Syverson, 2021). In particular, most datasets report output only in values, not in quantities. In
addition, many firms serve multiple destination markets, wherein they face heterogeneous demand
conditions, which is inconsistent with models that control for a single market-wide demand shifter.
This inconsistency is important for estimation, even when researchers are not interested in export-
ing or the effect of exporting per se.

In this paper, we show how to estimate output elasticities, the price elasticity of demand, the
elasticity of productivity to observable determinants, and productivity itself when firms serve mul-
tiple destination markets and when outputs are denominated only in monetary terms. We show that
existing production function estimators that use revenue to identify output yield biased and incon-
sistent inference in this case. Our estimator is no harder to implement than existing methods and
requires only one additional piece of information: firms’ export shares. Our estimator does not rely
on functional form assumptions for the production function, and although it relies on a common
industry-wide elasticity of demand, it allows for firm-destination-year prices and markups.

In addition to our main contribution, we confirm results from Gandhi et al. (2020) and Acker-
berg et al. (2023): the control function approach requires substantive time-series variation in flex-
ible input prices for identification, and is sensitive to initial conditions. In contrast, our estimator
does not have these drawbacks.

We demonstrate the practical advantages of our estimator relative to existing approaches using
balance sheet information for the universe of French manufacturing firms. In the French data, we
estimate demand elasticities between -21.5 and -3.4, which are in a range that is consistent with
much of the literature. We estimate average returns to scale ranging from 1.05 to 1.22 with one
industry at 1.37, and average returns to flexible inputs uniformly below 1. The latter result implies
cross-market complementarities: additional production for a given market raises the cost of serving
all other markets in the short run. Alternative approaches yield implausible estimates of returns to
scale or demand curvature, or both. We also estimate learning-by-exporting effects ranging from
0 to 4% per year, which imply cross-sectional differences in productivity between exporters and
non-exporters up to 40%.

Overall, the tools that we develop in this paper deliver more credible estimates of production
functions in contexts in which price and quantity data are unavailable, and in settings where firms
endogenously select into potentially multiple destination markets. It also allows us to study a de-

so these estimates are best compared to the results from our no-demand-correction estimator, with which we find in a
similar range of 0.016 to 0.092.
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terminant of productivity such as learning by exporting using a productivity estimation framework
that is consistent with heterogeneous firms’ export decisions and pricing to market.
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Appendix

A Proof of proposition 1

Identification of equation (29) requires orthogonality between ϕ f t and all variable and quasi-fixed
inputs. The term ϕ f t depends on output shares χ f t , which depend on the levels of DDD and εεε , as do
all variable and quasi-fixed inputs.

We must show that E
[
ϕ f t |v1

f t , ...,v
V
f t ,κ

1
f t , ...,κ

K
f t

]
= 0. Suffice to show that E

(
lnψ f t |DDD,εεε

)
=

constant (it is not equal to zero; see above) and does not depend on DDD and εεε .
First, we develop the Taylor expansion of ln∑ j χ jeu j around u = 0 (mean value for u’s). The

base term is

∑
j

χ jeu j

∣∣∣∣∣
uuu=0

= ln∑
j

χ je0 = ln∑
j

χ j = ln1 = 0 . (A.1)

The first order expansion term is:

1
1!

d ln∑
j

χ jeu j

∣∣∣∣∣
uuu=0

=
1
1!

1
∑ j χ jeu j ∑

j
χ jeu jdu j

∣∣∣∣∣
uuu=0

= ∑
j

χ jdu j . (A.2)

The second order expansion term is:

1
2!

d2 ln∑
j

χ jeu j

∣∣∣∣∣
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=
1
2

1
∑ j χ jeu j ∑

j
χ jeu jd2u j
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2 ∑
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χ jd2u j (A.3)

because (eu)n = eu for any n. And so on. The Taylor expansion around uuu = 0 is thus

ln∑
j

χ jeu j = ∑
j

χ ju j +
1
2 ∑

j
χ ju2

j +
1
3! ∑

j
χ ju3

j ... (A.4)

The structure is linear, and thus amenable to the expectation operator. Substituting into E
(
lnψ f t |DDD,εεε

)
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we have
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)
= E

[
∑

d∈Ω f t

χ
d
f t (DDD,εεε)ud

f t +
1
2 ∑

d∈Ω f t

χ
d
f t (DDD,εεε)(ud

f t)
2 +

1
3! ∑

d∈Ω f t

χ
d
f t (DDD,εεε)(ud

f t)
3 + ...

∣∣∣∣∣DDD,εεε

]
(A.5)

=
∑d∈Ω f t

χd
f t (DDD,εεε)E

[
ud

f t

∣∣∣DDD,εεε
]
+ 1

2 ∑d∈Ω f t
χd

f t (DDD,εεε)E
[
(ud

f t)
2
∣∣∣DDD,εεε

]
+ 1

3! ∑d∈Ω f t
χd

f t (DDD,εεε)E
[
(ud

f t)
3
∣∣∣(DDD,εεε)

]
+ ...

(A.6)

=
E
[
ud

f t

]
∑d∈Ω f t

χd
f t (DDD,εεε)+ 1

2E
[
(ud

f t)
2
]

∑d∈Ω f t
χd

f t (DDD,εεε)

+ 1
3!E
[
(ud

f t)
3
]

∑d∈Ω f t
χd

f t (DDD,εεε)+ ...
(A.7)

= E
[
ud

f t

]
+

1
2

E
[
(ud

f t)
2
]
+

1
3!

E
[
(ud

f t)
3
]
+

1
4!

E
[
(ud

f t)
4
]
... (A.8)

= 0+
1
2

E
[
(ud

f t)
2
]
+

1
3!

E
[
(ud

f t)
3
]
+

1
4!

E
[
(ud

f t)
4
]
... , (A.9)

which is a constant that does not depend on εεε . QED.
As a by-product, we now know what E

(
lnψ f t

)
is equal to:

E
(
lnψ f t

)
= EDDD,εεε

[
E
(
lnψ f t |DDD,εεε

)]
= E

(
lnψ f t |DDD,εεε

)
. (A.10)

where we apply the law of iterated expectations.

B Building market quantity proxy from price indices

In a single-market estimation model, the demand-side parameter is identified from time series
variation in the industry-wide CES demand index. In this section, we discuss how to construct this
index.

Essentially, the quantity index can be recovered from expenditure data and industry-wide price
deflators. Assuming just a single market (hence dropping the d superscript), and using (9) and
(11), we can write

Bρ

t = ∑
f∈Θt

exp
(
ε f t +u f t

)
Xρ

f t = ∑
f∈Θt

R f t

ϒt
Bρ−1

t (B.11)

This implies

Bt = ∑
f∈Θt

R f t

ϒt
(B.12)
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Hence, if we observe the true CES price index in levels, we can construct the CES quantity index
from aggregate deflated revenues.49

But of course, the true CES price index is not observed in levels. First, price indices are almost
always reported relative to some base year normalization. This implies

Bt = ∑
f∈Θt

R f t

ϒt
= ϒ0 ∑

f∈Θt

R f t

Λt︸ ︷︷ ︸
≡Bproxy

t

(B.13)

where Λt is the empirical analogue to the true CES price index normalized to base-year t = 0, and
ϒ0 is the unobserved base-year normalization.

Second, the CES price index is a theoretical construct that depends on structural parameters.
How does this theoretical object correspond to Λt? Sato (1976) and Vartia (1976) prove for a
symmetric CES with no entry and exit, there exists a set of weights wt f t such that

ln
ϒt

ϒ0
= ∑

f∈Θt

wt f t ln
(

p f t

p f i0

)
(B.14)

I.e., the log change in the true CES price index is a weighted average of the log change in the prices
of individual firms. Sato (1976) and Vartia (1976) give the analytical expression for these weights,
which ends up being very close to a simple chain weight. Feenstra (1994) extends to the case of
entry and exit. Redding & Weinstein (2020) extends to the asymmetric CES (which corresponds
to our demand system (9)). If we assume that Λt is computed using Weinstein-Redding weights,
then (B.13) holds.

C Control function method

In this section, we describe the control function approach to estimating our multi-destination
model. The procedure is based on the control function estimation of the gross output production
function described by Gandhi et al. (2020).50

The control function approach proceeds in two steps. In the first step, ex post shocks (possibly
inclusive of measurement error) are computed as the residual of a non-parametric regression of
revenues on all input levels. Identification relies on substituting for the endogenous unobservable

49In the only work we are aware of that explains how to construct the CES quantity index, De Loecker (2011)
computes the weighted average of deflated revenues (see De Loecker (2011) equation B.1.9 in the appendix), though
– as we show in (B.12) – theory indicates the gross sum is called for.

50The procedure from Gandhi et al. (2020) is virtually the same as the procedure proposed by Ackerberg et al.
(2015), except that Ackerberg et al. (2015) consider the value-added production function. Hence, Ackerberg et al.
(2015) do not identify the material input elasticity.
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with the material demand function. In the second step, the ex post shock is subtracted off from
revenues and all structural parameters are identified via GMM.

In the first step, Gandhi et al. (2020) invert the material demand function to substitute for the
unobserved shock (ν f t = ρω f t + ε1

f t , in our case). Since we assume cost minimizing behavior,
we can use the first order conditions instead to accomplish this substitution. Labeling material
demands v1

f t , we substitute (18) into (26) and write

r f t = f (vvv f t ,κκκ f t)− ln
[

∂F(vvv f t ,κκκ f t)

∂ev1
f t

]
+ lnW v1

t − lnρE [exp(u)]+ lnψ f t (C.15)

Collecting the first two terms into an unknown function, we get

r f t = Φ(v1
f t , ...,v

V
f t ,κ

1
f t , ...,κ

K
f t )+ lnW v1

t − lnρE [exp(u)]+ lnψ f t (C.16)

We estimate this model approximating Φ(·) with polynomials, including time fixed effects to con-
trol for input prices, and label the residual ϕ̂ f t .51

In the second step, we subtract off ϕ̂ f t from the both sides of (26) to write

r̃ f t = αt +ρ f (vvv f t ,κκκ f t)+(1−ρ) ln D̂ f t +ν f t (C.19)

with r̃ f t ≡ r f t − ϕ̂ f t , αt = lnD1
t +E [lnψ] and D̂ f t =

[
R f t exp(−̂ϕ f t)

R1
f t

]
. By assumptions (35) - (36),

we have that ν f t = hν f ,t−1 +µe f ,t−1 +ξ f t and ξ f t ≡ ε̃1
f t +(1−ρ)u1

f t +h(1−ρ)u1
f ,t−1 +ρω̃ f t .

51We could alternatively substitute for ν f t using the inverse material demand. In this case, the demand shifter

ln
[

R f t

R1
f t

]
does not cancel. With this method, we could write

r f t = Φ(v1
f t , ...,v

V
f t ,κ

1
f t , ...,κ

K
f t , ln

[
R f t

R1
f t

]
)+δt +ρ lnψ f t (C.17)

In this formulation, we identify ρ lnψ f t in the first step, not lnψ f t . If we identify ρ lnψ f t , then we can subtract it off
from both sides of (26) to write

r̃ f t = αt +ρF(vvv f t ,κκκ f t)+(1−ρ) ln
[

R f t

R1
f t

]
+ν f t (C.18)

The difference between this approach to the control function first step and the approach using the first order condition

is that here, we condition on ln
[

R f t

R1
f t

]
in the first step and then leave ϕ f t out of the construction of the firm-specific

demand shifter in the second step. Since we already assume monopolistic competition and cost minimizing behavior
to solve the model, there is no reason not to use the first order condition in the control function first step. But we
certainly could adopt this alternative method.
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We adopt a complete polynomial of degree 2 and write

r̃ f t = αt +β
D ln D̂ f t + ∑

j∈{1,...,V }
gv jv j

f t + ∑
j∈{1,...,K }

bκ jκ
j
f t + ∑

j∈{1,...,V }
∑

z∈{v j,...,vV ,κ1,...,κK }
gv jzv

j
f tz f t

+ ∑
j∈{1,...,K }

∑
z∈{κ j,...,κK ,v1,...,vV }

bκ jzκ
j
f tz f t +ν f t (C.20)

For any candidate vector, we can compute ν̂ f t +αt , regress ν̂ f t +αt on ̂ν f ,t−1 +αt−1, e f ,t−1, and
time fixed effects, and compute the residual ξ̂ f t (·). We then build moment conditions by multi-
plying ξ̂ f t (·) with the levels of all quasi-fixed inputs and ln D̂ f ,t−2 and all flexible inputs, along
with the appropriate interaction and square terms. At the true parameter values, ξ̂ f t correlates with
ln D̂ f t and all flexible inputs in period t. But given the timing assumptions, ξ̂ f t is orthogonal to the
lags of all flexible inputs and ln D̂ f ,t−2.

Finally, we compute ρ̂ = 1− β̂ D, deflate all the ĝ , b̂ coefficients, and compute factor output
elasticities.
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D Analytical Results on Bias

D.1 Bias in the OLS

Given Cobb-Douglas production, combining (18) and (25), we can write log revenues and material
demand

r f t = lnD1
t +ργ

M︸︷︷︸
≡β M

m f t + ργ
K︸︷︷︸

≡β K

k f t +(1−ρ)︸ ︷︷ ︸
≡β D

ln

(
R f t

R1
f t

)
+ zit + lnψ f t . (D.21)

and

M f t =

[
ργME [exp(u)]

W M
t

] 1
1−ργM

K
ργK

1−ργM
(

D1
t

) 1
1−ργM

(
R f t

R1
f t

) 1−ρ

1−ργM

exp
(

1
1−ργM zit

)
(D.22)

with zit ≡ ε1
f t +(1−ρ)u1

f t +ρω f t +(ρ −1) lnψ f t .
Using standard results on OVB, we have

E
[
β̂ M
]
= ργ

M +δ
M (D.23)

where δ M is the regression coefficient resulting from projecting zit on mit , kit , ln

(
R f t

R1
f t

)
. Rearrang-

ing, (D.22), we have

zit =
(
1−ργ

M)m f t − ln

[
ργME [exp(u)]

W M
t

]
−ργ

Kk− ln
(

D1
t

)
+(ρ −1) ln

(
R f t

R1
f t

)
(D.24)

which indicates that

δ
M = 1−ργ

M (D.25)

Hence,

E
[
β̂ M
]
= 1 (D.26)

Similar calculations yield

E
[
β̂ K
]
= 0 (D.27)
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E
[
β̂ D
]
= 0 (D.28)

which gives

E
[
γ̂M
]
= 1 , E

[
γ̂K
]
= 0 , E [ρ̂] = 1 (D.29)

D.2 Multiple solutions in the Control Function

To do
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E Single market simulations

In this appendix, we test the performance of the factor shares single-market estimator from Section
4.4 and a single-market version of the control function method that is described in Appendix C
when the underlying data generating process features just a single market.

First, we simulate data as described in Section 3 assuming there is just a single destination
market. With these simulated data, we estimate output elasticities and the curvature of the demand
function. These simulations extend the Monte Carlo experiments from Gandhi et al. (2020) and
Ackerberg et al. (2023) to the case of heterogeneous products with missing output price data, and
highlight the advantages of the factor share method over the control function approach.

For the data generating process, we impose that firms produce with a Cobb-Douglas production
function with one flexible input, materials (M), and one quasi-fixed input, capital (K):

Q f t = exp
(
ω f t
)

MγM
KγK

(E.30)

with γM = 0.8 and γK = 0.3. Capital updates each period according to the law of motion: K f t =

0.9K f ,t−1 + ι f ,t−1, where ι f t = exp(0.8ρω f t + 0.8ε f t)
(
K f t
)0.2. We fix ρ = 0.8. While we build

the data according to these restrictions for simplicity, we obviously need not impose any functional
form in the estimation.

Within each replication we draw total expenditures and quantity series, and homogeneous
(across firms) material input prices. At the firm level, we draw initial capital stocks K f ,1 ∼
U(1,201), initial productivity shocks ω f ,1 ∼ N(0,0.01), and initial ex ante demand shocks ε f ,1 ∼
N(0,0.0009). We let ω and ε update according to the same AR(1) process described in (35) and
(36), with h = 0.8 and where ω̃ f t ∼ N(0,0.01) and ε̃ f t ∼ N(0,0.0009). We draw ex post demand
shocks u f t ∼ N(0,0.0009). Firm-period quantities, revenues and inputs M f t are determined given
productivity, capital, materials prices and aggregate demand. We simulate 100 samples of a single
industry with 500 firms over 50 periods.52

We estimate in each sample of simulated data the factor shares approach and the control func-
tion approach assuming researchers observe R f t , M f t , K f t , W M

t , Bt and ϒt . For the factor shares
model, we set initial conditions for the first-step NLLS estimation for M based on an OLS estima-

52In the single-market case, we follow closely the experiments presented in Gandhi et al. (2020). Gandhi et al.
(2020) posit a long panel (50 periods) in order to give the control function a reasonable chance to identify the structural
parameters. Since the output elasticity for materials is identified purely from time-series variation in the material input
price, there is little chance that the control function identifies structural parameters in panels of only 10-15 years
(the type of duration one usually observes in balance sheet datasets). In the multi-market simulations below, we can
entertain much shorter panels.
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tion of the regression

ln

[
W m

f t M f t

R f t

]
= gm

0 +gm
mm f t +gm

k k f t +gm
mmm f tm f t +gm

kkk f tk f t +gm
mkm f tk f t +ϑ f t ,

where ϑ f t is a regression residual. For the second step GMM, we set initial conditions based on an
OLS estimation of the regression

r̃ f t = gkk f t +gkkkk f t +gDBt +ϑ
′
f t ,

where ϑ ′
f t is a regression residual and Bt is the true CES quantity index.

For the control function approach, we set initial conditions for the second-step GMM based on
an OLS estimation of the regression

r̃CF
f t = g0 +gDBt +gm

mm f t +gm
k k f t +gm

mmm f tm f t +gm
kkk f tk f t +gm

mkm f tk f t +ϑ
′′
f t ,

where r̃CF
f t represents log revenues net of the residual from the control function first step, and ϑ ′′

f t

is a regression residual. We denote the resulting control function estimates as “CF ls”, since the
GMM starts from the OLS point estimates. We also start the control function estimation from the
true parameter values and refer to the resulting estimates as “CF tr”.

In Figure E.1 we present the distribution of estimates of ρ and the average material and capital
output elasticities across the 100 samples by estimator, along with the average (“av”) and median
(“md”) of the distributions. In the top row we present the case of high input price variation. True
material and capital output elasticities are constant across firms and over time (σM = γM = 0.8 and
σK = γK = 0.3), and are depicted with vertical black lines.53

The distribution of the estimates from the factor shares approach is depicted in solid blue. For
each empirical object ρ , σK , σM, the distribution of estimates appears to be centered on the true
values. Averages and medians of the distributions are identical with the truth out to at least two
decimal places. Similarly, the distribution of the control function estimates taking true values as

the initial conditions (black solid line) also appears to be centered on the truth, with averages and
medians of distributions identical to the truth out to at least two decimal places. The distribution
of the solid blue line is clearly narrower than the distribution of the solid black line, indicating that
the factor shares approach is more efficient.

In contrast, when the second step of the control function method starts the optimization algo-
rithm from the OLS values (black dashed line), the distributions of estimates are clearly biased.

53Estimated material and capital output elasticities vary both due to sampling error and with the level of capital
because we allow for higher order terms in capital and interactions between inputs in the estimation process (see
equations (41) and (42)).
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Figure E.1: Parameter Estimates in the Single-Market Simulations
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Notes. The figure reports the distribution of averages of estimates across 100 Monte Carlo samples. Top (bottom) row
presents results for high (low) input price variation. True parameter values are depicted as vertical lines. Averages
(“av”) and medians (“md”) of distributions for each estimator are reported below each subfigure. “FS” indicates
the factor shares method. “CF - ls” indicates control function method where the GMM optimization starts from the
OLS values. “CF - tr” indicates control function method where the GMM optimization starts from the true model
parameters. Red line indicates the median estimate based on an OLS regression.

Estimates of ρ and σM tend to center around 1, and estimates of σK center around 0. These values
coincide roughly with the median results from a naïve OLS estimate of the production function
(depicted with a vertical red line).

Also in Figure E.1, we present in the bottom row the distribution of estimates for the case of
low input price variation. The factor shares method still recovers unbiased estimates of structural
parameters. However, the estimates from the control function method are biased even when the
GMM optimization starts from the true parameters. As explained by Nelson & Startz (1990),
instrumental variables estimators are biased towards OLS in finite samples with weak instruments.
We can see this pattern from the medians of the distributions in solid black. The distributions are
wide, and outliers severely distort the means, but the medians indicate that the estimates of σM are
biased up and the estimates of σK are biased down, as they are in OLS. This is the same pattern
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found in Monte Carlo simulations by Gandhi et al. (2020) for the single-market case in which
quantities are observed.

Comparing the solid black line to the dashed black line, it is clear that the control function
is sensitive to initial starting conditions. We explore this sensitivity further by plotting the distri-
bution of parameter estimates from the control function method when varying systematically the
initial values of the second step of the GMM procedure below. We run the same Monte Carlo
simulations as in the main text. We vary initial conditions for β D

0 ∈ {0,0.05,0.1,0.15,0.2,0.25},
β M

0 ∈ {0.2,0.3,0.4,0.5,0.6,0.7,0.8} and β K
0 ∈ {0,0.1,0.2,0.3,0.4}. We compute the GMM so-

lution starting from every combination defined by these three sets. Recall that the true parameter
values are β D = 1−ρ = 0.2, β M = ρσM = 0.64 and β K = ρσK = 0.24.

In Figure E.2 (E.3), we present results when the data is simulated with a high (low) degree of
time series variation in material input prices. We display the distribution of GMM solutions for
each parameter for two different Monte Carlo samples, one in each row. Results starting from the
OLS estimates are depicted with a vertical red dashed line. Results from all other starting values
are depicted in solid bars in blue.

In Figure E.2, we see that the estimates based on the OLS initial values coincide with the results
in Figure E.1: starting from the OLS values, the GMM solution tends towards ρ = 1, σM = 1, and
σK = 0 (red dashed line). In Figure E.2, we also see that when the GMM starts from other initial
conditions there is a mass point of convergence around the same values, although we also see other
mass points. This bunching pattern is consistent with Ackerberg et al. (2023).

In Figure E.3, we see that the estimates converges more often towards the OLS results. That
is, the distribution is bunched more tightly around the OLS estimates than in Figure E.2. This is
what we would expect, as with low input price variation, the GMM suffers from weak instruments,
which tends to bias the esitmates towards the OLS result.
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Figure E.2: Different Starting Values for Control Function Estimation, High Material Price Varia-
tion
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Notes. The figure reports the distribution of estimates of ρ and averages of estimates of factor output elasticities
resulting from the control function method taking different parameter vectors as starting values for the second-step
GMM procedure. Each row reports results for a single Monte Carlo sample. Data is generated based on the single-
market scenario described in Section E, with high input price variation. The true parameter values are ρ = 0.8,
σM = 0.8 and σK = 0.3.
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Figure E.3: Different Starting Values for Control Function Estimation, Low Material Price Varia-
tion
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Notes. The figure reports the distribution of estimates of ρ and averages of estimates of factor output elasticities
resulting from the control function method taking different parameter vectors as starting values for the second-step
GMM procedure. Each row reports results for a single Monte Carlo sample. Data is generated based on the single-
market scenario described in Section E, with low input price variation. The true parameter values are ρ = 0.8, σM = 0.8
and σK = 0.3.
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F Additional Monte Carlo Simulation Results

Figure F.4: Coverage Ratios for the Multi-Market Estimator
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Notes. The figure reports point estimates and 95% confidence intervals of our multi-market estimator across 100
simulations of the multi-market model with 2,000 firms each. Solid dots mark point estimates for which the true
parameter value lies within the 95% confidence interval. Red circles mark point estimates for which the true parameter
value lies outside of the 95% confidence interval. All confidence intervals are computed using bootstrapped standard
errors.
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Figure F.5: Coverage Ratios for the Estimator with Single-Market Correction
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Notes. The figure reports point estimates and 95% confidence intervals of the single-market estimator across 100
simulations of the multi-market model with 2,000 firms each. Solid dots mark point estimates for which the true
parameter value lies within the 95% confidence interval. Red circles mark point estimates for which the true parameter
value lies outside of the 95% confidence interval. All confidence intervals are computed using bootstrapped standard
errors. We note that standard errors and confidence intervals across samples are quite small, especially for ρ; this is
because we estimate the model using the true, exogenous process for Bt , which is common to all firms and across all
replications (only productivity draws across firms differ within and across replications).
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G Data

Firm-level balance sheet information is reported in the FICUS (Fichier complet unifié de SUSE)
and FARE (Fichier Approché des Résultats ESANE) datasets, which cover the periods 1994–2007
and 2008–2016, respectively. These data originate in tax declarations of all firms in France, and
are collected by the French National Institute of Statistics and Economic Studies, INSEE. We use
total revenue, expenditure on materials, employment and the book value of capital.

We construct capital stocks following the methodology proposed by Bonleu et al. (2013) and
Cette et al. (2015). We start with the book value of capital. Since the stocks are recorded at
historical cost, i.e., the value at the time of entry into the firm i’s balance sheet, an adjustment has
to be made to move from stocks valued at historic cost (KBV

i,s,t) to stocks valued at current prices
(Ki,s,t). We deflate KBV by an industry-specific price index (sourced from INSEE) that assumes that
the price of capital is equal to the sectoral price of investment T years before the date when the first
book value was available, where T is the corrected average age of capital, hence pK

s,t+1 = pI
s,t−T .

The average age of capital is computed using the share of depreciated capital, DKBV
i,s,t in the capital

stock at historical cost:

T =
DKBV

i,s,t

KBV
i,s,t

× Ã

where

Ã = mediani∈S

(
KBV

i,s,t

∆DKBV
i,s,t

)

where S the set of firms in a sector. We use the median value Ã to reduce the volatility in the data,
as investments within firms are discrete events.

Data on firms’ exports are from the French Customs. For each observation, we know the
value of exports of the firm. We use the firm-level SIREN identifier to match the trade data to
FICUS/FARE. This match is not perfect. The imperfect match is because there are SIRENs in
the trade data for which there is no corresponding SIREN in FICUS/FARE. This may lead to
measurement error: for some firms, we will observe zero exports even when true exports are
positive. This is not a big concern because most of the missing values are in the oil refining
industry, which we drop from our sample.
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H Additional Results from French Manufacturing

In this section, we first report the detailed results that are presented in the paper graphically and
then report two additional sets of results. The first allows for dynamic, partial adjustment for labor
and serves as a robustness check for the main results. The second set of results applies the control
function method, which is just for comparison, as we expect finite sample bias and weak moments
problems.

H.1 Results with pre-determined labor
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Table H.1: Estimates using Multi-Market Estimator, Predetermined Labor Input

Industry σM σL σK RTS ρ η = 1
(ρ−1) µ h µ/(1−h)

Food, beverage, tobacco 0.488 0.546 0.346 1.380 0.710 -3.453 -0.004 0.792 -0.019
(0.009) (0.010) (0.007) (0.025) (0.013) (0.163) (0.003) (0.005) (0.013)

Textiles, wearing apparel 0.339 0.560 0.237 1.136 0.798 -4.956 0.040 0.898 0.396
(0.024) (0.037) (0.017) (0.076) (0.051) (1.486) (0.003) (0.004) (0.023)

Wood, paper products 0.312 0.719 0.187 1.218 0.807 -5.178 0.019 0.830 0.111
(0.006) (0.013) (0.005) (0.022) (0.014) (0.357) (0.001) (0.006) (0.006)

Chemical products 0.384 0.535 0.177 1.096 0.954 -21.523 0.013 0.870 0.102
(0.007) (0.015) (0.009) (0.015) (0.012) (6.614) (0.002) (0.015) (0.016)

Rubber and plastic 0.360 0.536 0.203 1.099 0.923 -13.015 0.000 0.870 0.002
(0.010) (0.016) (0.012) (0.036) (0.027) (5.364) (0.001) (0.007) (0.010)

Basic metal and fabricated metal 0.269 0.734 0.209 1.212 0.808 -5.195 0.010 0.836 0.060
(0.006) (0.017) (0.006) (0.028) (0.018) (0.500) (0.001) (0.005) (0.007)

Computer, electronics 0.325 0.595 0.150 1.070 0.918 -12.266 0.019 0.838 0.117
(0.007) (0.015) (0.007) (0.021) (0.017) (2.952) (0.002) (0.008) (0.014)

Electrical equipment 0.366 0.533 0.156 1.055 0.931 -14.575 0.017 0.833 0.105
(0.011) (0.019) (0.009) (0.029) (0.025) (27.360) (0.003) (0.010) (0.014)

Machinery and equipment 0.341 0.676 0.141 1.158 0.829 -5.838 0.029 0.786 0.137
(0.014) (0.028) (0.012) (0.052) (0.033) (0.653) (0.002) (0.008) (0.007)

Autos and transport equipment 0.386 0.562 0.172 1.120 0.942 -17.316 0.018 0.792 0.086
(0.006) (0.014) (0.010) (0.018) (0.014) (3.865) (0.003) (0.018) (0.012)

Other manufacturing 0.273 0.631 0.227 1.131 0.827 -5.767 0.024 0.856 0.167
(0.006) (0.012) (0.007) (0.021) (0.017) (0.631) (0.001) (0.006) (0.008)

Notes. The table reports estimates based on the multi-market estimator, treating labor as predetermined (like capital): average output
elasticities σ j for materials input ( j = M), labor ( j = L) and capital ( j = M), overall returns to scale (RTS), the demand elasticity
η = 1/(ρ −1), the coefficient to learning by exporting µ , the persistence parameter in the controlled Markov h, and the long run effect
of exporting µ/(1−h). Bootstrap standard errors clustered by firm in parentheses.
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Table H.2: Estimates using no Demand Correction, Predetermined Labor Input

Industry σM σL σK RTS ρ η = 1
(ρ−1) µ h µ/(1−h)

Food, beverage, tobacco 0.346 0.401 0.160 0.907 - - 0.092 0.923 1.185
(0.001) (0.003) (0.002) (0.003) (0.002) (0.002) (0.027)

Textiles, wearing apparel 0.271 0.455 0.169 0.895 - - 0.041 0.951 0.822
(0.002) (0.006) (0.004) (0.005) (0.002) (0.002) (0.029)

Wood, paper products 0.252 0.581 0.145 0.977 - - 0.035 0.949 0.695
(0.001) (0.004) (0.003) (0.003) (0.002) (0.002) (0.019)

Chemical products 0.366 0.511 0.167 1.044 - - 0.023 0.969 0.751
(0.004) (0.013) (0.009) (0.006) (0.003) (0.005) (0.084)

Rubber and plastic 0.333 0.493 0.179 1.006 - - 0.016 0.971 0.546
(0.002) (0.005) (0.005) (0.003) (0.001) (0.002) (0.039)

Basic metal and fabricated metal 0.218 0.596 0.156 0.969 - - 0.035 0.931 0.505
(0.001) (0.004) (0.003) (0.003) (0.001) (0.002) (0.014)

Computer, electronics 0.299 0.536 0.144 0.979 - - 0.038 0.936 0.597
(0.004) (0.010) (0.006) (0.009) (0.003) (0.007) (0.044)

Electrical equipment 0.341 0.484 0.144 0.969 - - 0.034 0.953 0.710
(0.004) (0.011) (0.008) (0.008) (0.003) (0.004) (0.051)

Machinery and equipment 0.283 0.556 0.109 0.948 - - 0.053 0.880 0.446
(0.002) (0.007) (0.003) (0.007) (0.002) (0.008) (0.020)

Autos and transport equipment 0.363 0.541 0.147 1.052 - - 0.045 0.924 0.586
(0.004) (0.010) (0.008) (0.008) (0.005) (0.014) (0.069)

Other manufacturing 0.226 0.531 0.166 0.923 - - 0.039 0.943 0.681
(0.001) (0.005) (0.003) (0.004) (0.002) (0.002) (0.021)

Notes. The table reports estimates without correcting for demand at all, using the factor share approach, treating labor as predetermined
(like capital): average output elasticities σ j for materials input ( j = M), labor ( j = L) and capital ( j = M), overall returns to scale (RTS),
the demand elasticity η = 1/(ρ −1), the coefficient to learning by exporting µ , the persistence parameter in the controlled Markov h,
and the long run effect of exporting µ/(1−h). Bootstrap standard errors clustered by firm in parentheses.
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Table H.3: Estimates using Single-Market Estimator (KG), Predetermined Labor Input

Industry σM σL σK RTS ρ η = 1
(ρ−1) µ h µ/(1−h)

Food, beverage, tobacco 0.843 0.964 0.411 2.218 0.411 -1.698 0.085 0.849 0.563
(0.018) (0.024) (0.010) (0.050) (0.009) (0.025) (0.004) (0.005) (0.019)

Textiles, wearing apparel 0.182 0.310 0.113 0.605 1.487 2.054 0.027 0.894 0.257
(0.003) (0.006) (0.003) (0.010) (0.022) (0.094) (0.001) (0.004) (0.008)

Wood, paper products 0.497 1.141 0.296 1.935 0.506 -2.025 0.036 0.848 0.236
(0.029) (0.064) (0.020) (0.112) (0.030) (0.126) (0.002) (0.007) (0.016)

Chemical products 2.534 3.532 1.183 7.249 0.144 -1.169 0.101 0.873 0.797
(0.537) (0.786) (0.243) (1.553) (0.025) (0.034) (0.026) (0.015) (0.220)

Rubber and plastic -0.790 -1.158 -0.452 -2.399 -0.421 -0.704 -0.007 0.875 -0.059
(0.083) (0.125) (0.041) (0.247) (0.051) (0.024) (0.002) (0.008) (0.015)

Basic metal and fabricated metal 0.448 1.161 0.373 1.982 0.486 -1.944 0.029 0.851 0.192
(0.014) (0.033) (0.014) (0.058) (0.014) (0.054) (0.002) (0.006) (0.010)

Computer, electronics 0.393 0.719 0.181 1.293 0.759 -4.150 0.031 0.837 0.189
(0.028) (0.052) (0.016) (0.093) (0.055) (1.559) (0.003) (0.009) (0.019)

Electrical equipment 0.477 0.698 0.188 1.362 0.715 -3.511 0.031 0.834 0.188
(0.018) (0.030) (0.011) (0.049) (0.025) (0.338) (0.003) (0.011) (0.017)

Machinery and equipment 0.498 0.982 0.194 1.674 0.568 -2.316 0.061 0.794 0.296
(0.057) (0.106) (0.031) (0.193) (0.042) (0.153) (0.005) (0.014) (0.065)

Autos and transport equipment 0.370 0.545 0.159 1.073 0.983 -58.695 0.023 0.795 0.111
(0.005) (0.010) (0.009) (0.009) (0.004) (14.148) (0.002) (0.018) (0.010)

Other manufacturing -0.352 -0.818 -0.304 -1.475 -0.640 -0.610 -0.034 0.876 -0.271
(0.074) (0.175) (0.060) (0.308) (0.108) (0.042) (0.009) (0.007) (0.054)

Notes. The table reports estimates based on the single-market estimator à la Klette & Griliches (1996), using the factor share approach,
treating labor as predetermined (like capital): average output elasticities σ j for materials input ( j =M), labor ( j = L) and capital ( j =M),
overall returns to scale (RTS), the demand elasticity η = 1/(ρ −1), the coefficient to learning by exporting µ , the persistence parameter
in the controlled Markov h, and the long run effect of exporting µ/(1−h). Bootstrap standard errors clustered by firm in parentheses.
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Figure H.6: Returns to Scale by Industry

Notes. This figure presents estimated returns to scale via the multi-market factor shares estimator by firm-year against
log of capital. Labor is assumed to be pre-determined.
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Table H.4: Estimates using Single-Market Estimator (KG) on Sample of Non-Exporters, Predetermined Labor Input

Industry σM σL σK RTS ρ η = 1
(ρ−1) µ h µ/(1−h)

Food, beverage, tobacco 0.824 0.950 0.421 2.196 0.420 -1.725 - 0.857 -
(0.018) (0.024) (0.010) (0.050) (0.009) (0.026) (0.005)

Textiles, wearing apparel 0.179 0.318 0.127 0.624 1.515 1.942 - 0.913 -
(0.003) (0.007) (0.003) (0.011) (0.024) (0.092) (0.003)

Wood, paper products 0.521 1.210 0.325 2.056 0.483 -1.935 - 0.851 -
(0.032) (0.071) (0.023) (0.124) (0.030) (0.115) (0.006)

Chemical products 2.838 4.035 1.361 8.235 0.129 -1.148 - 0.874 -
(0.729) (1.078) (0.343) (2.136) (0.026) (0.034) (0.014)

Rubber and plastic -0.789 -1.162 -0.454 -2.405 -0.422 -0.703 - 0.874 -
(0.082) (0.125) (0.041) (0.247) (0.051) (0.024) (0.008)

Basic metal and fabricated metal 0.456 1.193 0.395 2.044 0.477 -1.913 - 0.854 -
(0.014) (0.034) (0.014) (0.059) (0.014) (0.051) (0.005)

Computer, electronics 0.458 0.852 0.229 1.539 0.652 -2.874 - 0.843 -
(0.039) (0.073) (0.024) (0.133) (0.058) (0.618) (0.009)

Electrical equipment 0.489 0.727 0.212 1.428 0.697 -3.304 - 0.838 -
(0.019) (0.031) (0.012) (0.053) (0.026) (0.299) (0.011)

Machinery and equipment 0.510 1.025 0.219 1.753 0.555 -2.245 - 0.804 -
(0.073) (0.140) (0.043) (0.255) (0.046) (0.155) (0.013)

Autos and transport equipment 0.370 0.555 0.168 1.093 0.982 -55.556 - 0.801 -
(0.005) (0.011) (0.009) (0.010) (0.004) (12.718) (0.018)

Other manufacturing -0.309 -0.738 -0.276 -1.323 -0.729 -0.578 - 0.881 -
(0.055) (0.132) (0.045) (0.231) (0.108) (0.037) (0.007)

Notes. The table reports estimates based on the single-market estimator à la Klette & Griliches (1996), using the factor share approach,
treating labor as predetermined (like capital), where we restrict the sample to non-exporting firms: average output elasticities σ j for
materials input ( j = M), labor ( j = L) and capital ( j = M), overall returns to scale (RTS), the demand elasticity η = 1/(ρ − 1), the
coefficient to learning by exporting µ , the persistence parameter in the controlled Markov h, and the long run effect of exporting
µ/(1−h). Bootstrap standard errors clustered by firm in parentheses.
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H.2 Results allowing partial adjustment for labor

We present results that allow labor to partially adjust to contemporaneous productivity and demand
shocks. This permits entertaining the possibility that firms have the ability to flexibly adjust part of
employment, while another part is pre-determined within the period. This is particularly interesting
in the context of the French dual labor market, which features both short-term fixed employment
contracts and long term indefinite duration contracts. Even though the French dual labor market
is known for its rigidity, it is certainly possible that French firms adjust the current labor stock
to contemporaneous supply and demand shocks, even if not completely (Saint-Paul, 1996; Reshef
et al., 2022). To allow for this possibility, we need only adjust the factor shares second step moment
condition (40) to replace all contemporaneous labor measures with lagged measures.

We report detailed results for the four models estimated above (multi-market, no demand cor-
rection, single market, and single market with no exporters) in Tables H.5–H.8. The results are
quite similar to our main specification, in which we treat labor as quasi-fixed. We estimate slightly
higher returns to scale and lower elasticities of substitution for the multi-market estimator, and a
slightly larger range of values for LBE (−0.014 to 0.045). Estimates based on the single-market
correction estimator still vary wildly by industry, and the estimates of LBE still appear biased up
in the two misspecified estimators.
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Table H.5: Estimates using Multi-Market Estimator, Partially Adjusting Labor Input

Industry σM σL σK RTS ρ η = 1
(ρ−1) µ h µ/(1−h)

Food, beverage, tobacco 0.486 0.846 0.199 1.532 0.712 -3.475 0.006 0.723 0.021
(0.008) (0.013) (0.004) (0.024) (0.012) (0.142) (0.003) (0.004) (0.010)

Textiles, wearing apparel 0.373 0.779 0.185 1.337 0.725 -3.641 0.045 0.849 0.296
(0.021) (0.072) (0.013) (0.089) (0.039) (0.541) (0.003) (0.005) (0.020)

Wood, paper products 0.323 0.941 0.102 1.365 0.780 -4.545 0.011 0.776 0.051
(0.005) (0.019) (0.004) (0.024) (0.012) (0.246) (0.002) (0.005) (0.007)

Chemical products 0.390 0.703 0.105 1.198 0.937 -15.926 -0.000 0.821 -0.002
(0.006) (0.023) (0.012) (0.017) (0.010) (2.817) (0.003) (0.012) (0.016)

Rubber and plastic 0.374 0.736 0.124 1.233 0.890 -9.120 -0.014 0.818 -0.079
(0.009) (0.032) (0.005) (0.041) (0.022) (1.453) (0.003) (0.006) (0.015)

Basic metal and fabricated metal 0.277 0.898 0.126 1.301 0.786 -4.683 0.005 0.802 0.024
(0.006) (0.024) (0.004) (0.030) (0.017) (0.364) (0.001) (0.004) (0.007)

Computer, electronics 0.328 0.711 0.095 1.133 0.911 -11.225 0.009 0.810 0.046
(0.007) (0.024) (0.008) (0.027) (0.018) (2.619) (0.003) (0.007) (0.016)

Electrical equipment 0.368 0.644 0.099 1.112 0.926 -13.430 0.012 0.799 0.062
(0.010) (0.031) (0.012) (0.032) (0.024) (5.545) (0.003) (0.008) (0.016)

Machinery and equipment 0.348 0.811 0.092 1.251 0.813 -5.360 0.019 0.758 0.080
(0.015) (0.055) (0.004) (0.071) (0.034) (0.583) (0.003) (0.005) (0.010)

Autos and transport equipment 0.382 0.637 0.129 1.148 0.951 -20.317 0.009 0.767 0.037
(0.006) (0.016) (0.010) (0.018) (0.013) (4.929) (0.003) (0.015) (0.013)

Other manufacturing 0.292 0.962 0.138 1.392 0.771 -4.374 0.008 0.775 0.035
(0.005) (0.022) (0.005) (0.027) (0.014) (0.277) (0.002) (0.004) (0.010)

Notes. The table reports estimates based on the multi-market estimator, allowing labor to partially adjust to current period shocks:
average output elasticities σ j for materials input ( j = M), labor ( j = L) and capital ( j = M), overall returns to scale (RTS), the demand
elasticity η = 1/(ρ −1), the coefficient to learning by exporting µ , the persistence parameter in the controlled Markov h, and the long
run effect of exporting µ/(1−h). Bootstrap standard errors clustered by firm in parentheses.
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Table H.6: Estimates using Single-Market Estimator (KG), Partially Adjusting Labor Input

Industry σM σL σK RTS ρ η = 1
(ρ−1) µ h µ/(1−h)

Food, beverage, tobacco 0.469 0.914 0.084 1.466 0.739 -3.826 0.054 0.775 0.238
(0.012) (0.018) (0.007) (0.033) (0.018) (0.262) (0.003) (0.003) (0.013)

Textiles, wearing apparel 0.171 0.287 0.115 0.573 1.586 1.706 0.029 0.852 0.195
(0.003) (0.012) (0.007) (0.010) (0.029) (0.085) (0.002) (0.005) (0.012)

Wood, paper products 0.508 1.429 0.193 2.130 0.496 -1.982 0.026 0.810 0.137
(0.032) (0.095) (0.016) (0.136) (0.030) (0.120) (0.003) (0.004) (0.013)

Chemical products 23.606 44.825 5.790 74.221 0.015 -1.016 -0.310 0.836 -1.890
(85.397) (163.150) (19.452) (267.802) (0.151) (0.471) (0.804) (0.015) (5.118)

Rubber and plastic -0.803 -1.554 -0.293 -2.650 -0.415 -0.707 0.020 0.830 0.116
(0.087) (0.154) (0.034) (0.272) (0.054) (0.025) (0.003) (0.007) (0.016)

Basic metal and fabricated metal 0.352 0.900 0.274 1.526 0.618 -2.615 0.024 0.810 0.127
(0.008) (0.034) (0.012) (0.041) (0.014) (0.096) (0.002) (0.005) (0.010)

Computer, electronics 0.428 0.893 0.150 1.471 0.697 -3.300 0.020 0.812 0.107
(0.030) (0.069) (0.016) (0.107) (0.049) (0.649) (0.003) (0.008) (0.017)

Electrical equipment 0.485 0.828 0.134 1.448 0.702 -3.358 0.023 0.799 0.115
(0.021) (0.062) (0.018) (0.071) (0.030) (0.372) (0.004) (0.012) (0.020)

Machinery and equipment 0.554 1.218 0.172 1.944 0.510 -2.042 0.056 0.776 0.251
(0.078) (0.176) (0.033) (0.286) (0.044) (0.131) (0.007) (0.010) (0.053)

Autos and transport equipment 0.370 0.615 0.127 1.112 0.982 -54.193 0.011 0.770 0.050
(0.004) (0.016) (0.011) (0.011) (0.004) (14.038) (0.003) (0.015) (0.010)

Other manufacturing 2.353 7.098 1.496 10.948 0.096 -1.106 0.252 0.803 1.274
(9.305) (28.465) (5.755) (43.521) (0.060) (0.075) (0.928) (0.005) (4.851)

Notes. The table reports estimates based on the single-market estimator à la Klette & Griliches (1996), using the factor share approach,
allowing labor to partially adjust to current period shocks: average output elasticities σ j for materials input ( j = M), labor ( j = L) and
capital ( j = M), overall returns to scale (RTS), the demand elasticity η = 1/(ρ − 1), the coefficient to learning by exporting µ , the
persistence parameter in the controlled Markov h, and the long run effect of exporting µ/(1−h). Bootstrap standard errors clustered by
firm in parentheses.
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Table H.7: Estimates using Single-Market Estimator (KG) on Sample of Non-Exporters, Partially Adjusting Labor Input

Industry σM σL σK RTS ρ η = 1
(ρ−1) µ h µ/(1−h)

Food, beverage, tobacco 0.455 0.905 0.084 1.444 0.761 -4.179 - 0.777 -
(0.012) (0.018) (0.008) (0.033) (0.019) (0.331) (0.003)

Textiles, wearing apparel 0.162 0.305 0.114 0.581 1.673 1.487 - 0.850 -
(1.479) (1.440) (1.419) (4.338) (0.248) (0.361) (0.012)

Wood, paper products 0.522 1.491 0.200 2.214 0.482 -1.930 - 0.811 -
(0.034) (0.101) (0.017) (0.145) (0.030) (0.114) (0.004)

Chemical products 18.729 35.354 4.628 58.711 0.020 -1.020 - 0.836 -
(36.482) (69.525) (8.114) (114.013) (0.098) (0.079) (0.015)

Rubber and plastic -0.812 -1.548 -0.299 -2.659 -0.410 -0.709 - 0.832 -
(0.088) (0.157) (0.035) (0.277) (0.054) (0.025) (0.007)

Basic metal and fabricated metal 0.357 0.933 0.280 1.569 0.610 -2.563 - 0.811 -
(0.008) (0.034) (0.012) (0.041) (0.013) (0.089) (0.005)

Computer, electronics 0.465 0.997 0.163 1.625 0.642 -2.792 - 0.815 -
(0.035) (0.083) (0.019) (0.129) (0.050) (0.456) (0.008)

Electrical equipment 0.494 0.870 0.140 1.504 0.690 -3.222 - 0.801 -
(0.022) (0.063) (0.019) (0.073) (0.030) (0.338) (0.011)

Machinery and equipment 0.578 1.312 0.186 2.076 0.489 -1.958 - 0.783 -
(0.094) (0.221) (0.041) (0.355) (0.045) (0.125) (0.009)

Autos and transport equipment 0.370 0.627 0.128 1.124 0.981 -53.237 - 0.773 -
(0.004) (0.016) (0.011) (0.011) (0.004) (13.594) (0.015)

Other manufacturing 3.197 10.031 1.991 15.219 0.071 -1.076 - 0.804 -
(406.503) (1280.868) (252.535) (1939.906) (0.059) (0.069) (0.005)

Notes. The table reports estimates based on the single-market estimator à la Klette & Griliches (1996), using the factor share approach,
allowing labor to partially adjust to current period shocks, where we restrict the sample to non-exporting firms: average output elasticities
σ j for materials input ( j = M), labor ( j = L) and capital ( j = M), overall returns to scale (RTS), the demand elasticity η = 1/(ρ −1),
the coefficient to learning by exporting µ , the persistence parameter in the controlled Markov h, and the long run effect of exporting
µ/(1−h). Bootstrap standard errors clustered by firm in parentheses.
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Table H.8: Estimates using no Demand Correction, Partially Adjusting Labor Input

Industry σM σL σK RTS ρ η = 1
(ρ−1) µ h µ/(1−h)

Food, beverage, tobacco 0.346 0.635 0.070 1.052 - - 0.142 0.861 1.024
(0.001) (0.008) (0.004) (0.006) (0.003) (0.004) (0.041)

Textiles, wearing apparel 0.271 0.433 0.192 0.896 - - 0.046 0.948 0.869
(0.002) (0.021) (0.009) (0.013) (0.003) (0.003) (0.038)

Wood, paper products 0.252 0.708 0.092 1.052 - - 0.046 0.908 0.507
(0.001) (0.010) (0.005) (0.006) (0.001) (0.005) (0.025)

Chemical products 0.366 0.830 0.025 1.221 - - 0.011 0.869 0.088
(0.004) (0.339) (0.153) (0.186) (0.091) (0.027) (0.902)

Rubber and plastic 0.333 0.689 0.097 1.118 - - 0.026 0.944 0.462
(0.002) (0.022) (0.010) (0.013) (0.002) (0.005) (0.041)

Basic metal and fabricated metal 0.218 0.629 0.129 0.976 - - 0.041 0.898 0.400
(0.001) (0.010) (0.005) (0.006) (0.002) (0.007) (0.021)

Computer, electronics 0.299 0.611 0.115 1.025 - - 0.043 0.903 0.443
(0.004) (0.023) (0.011) (0.014) (0.003) (0.016) (0.062)

Electrical equipment 0.341 0.569 0.105 1.015 - - 0.054 0.920 0.675
(0.004) (0.040) (0.022) (0.021) (0.008) (0.037) (0.174)

Machinery and equipment 0.283 0.624 0.085 0.992 - - 0.055 0.858 0.390
(0.002) (0.006) (0.003) (0.005) (0.002) (0.007) (0.021)

Autos and transport equipment 0.363 0.602 0.120 1.085 - - 0.046 0.937 0.730
(0.004) (0.014) (0.010) (0.010) (0.004) (0.009) (0.084)

Other manufacturing 0.226 0.680 0.129 1.035 - - 0.053 0.922 0.686
(0.001) (0.012) (0.005) (0.009) (0.002) (0.003) (0.033)

Notes. The table reports estimates without correcting for demand at all, using the factor share approach, allowing labor to partially
adjust to current period shocks: average output elasticities σ j for materials input ( j = M), labor ( j = L) and capital ( j = M), overall
returns to scale (RTS), the demand elasticity η = 1/(ρ −1), the coefficient to learning by exporting µ , the persistence parameter in the
controlled Markov h, and the long run effect of exporting µ/(1−h). Bootstrap standard errors clustered by firm in parentheses.
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H.3 Results using the control function method in French manufacturing
data

We report here estimates of production functions, demand parameters and controlled Markov pro-
cesses across different models—multi-market model, single market model with and without ex-
porters, and without correction for demand—using the control function method. In doing so we
cannot apply a quasi-non-parametric approach as we did above when using the factor shares ap-
proach. Instead, we must make a slightly stronger assumption on the structure of the production
function. Since the data clearly reject a Cobb-Douglas production function, we apply a translog,
which is a second order approximation.

We use OLS estimates for setting the initial values for the GMM search, which is a common
practice. This procedure is prone to the Ackerberg et al. (2023) critique, whereby the GMM search
tends not to move away from the OLS point estimates. However, this does not restrict the results
to be similar across different models. Indeed, the results are distinct across models.

In the paper, Section 2 already presented graphically the results from the control function ap-
proach with no demand correction (as in Table H.12) and with a single-market correction. From
Tables H.9–H.11, we find that the three models that apply some correction for demand (multi-
market, single market, and single-market while excluding exporters) yield implausible returns to
scale and output elasticities, or implausible demand curvatures, or both. For example, with the
multi-market estimator, we estimate positive demand elasticities for 5 out of 11 industries (though
these estimates are quite imprecise). Estimated returns to scale with the multi-market control func-
tion model are also quite close to 1, which is similar to results applying the naïve OLS approach.54

The single market correction model yields erratic and implausible estimates of both returns to scale
and demand elasticities, regardless of whether we exclude exporters. The model with no correc-
tion for demand yields mostly plausible estimates of returns to scale (except for Wood and paper
products), but with quite low estimates of returns to capital and high returns to materials—a telltale
sign of transmission bias. We conclude that the control function approach delivers, in practice, a
poor estimator of the production function and demand parameters, even after correcting for firms
serving multi-destination markets.

54Since we use initial conditions from naïve OLS estimates of the production functions and demand curvature, we
are not surprised to find similar results after performing the GMM search for the non-linear estimator (Ackerberg et al.,
2023).
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Table H.9: Estimates using Multi-Market Model, Control Function Estimator

Industry σM σL σK RTS ρ η = 1
(ρ−1) µ h µ/(1−h)

Food, beverage, tobacco 0.685 0.246 0.107 1.038 0.909 -11.021 -0.002 0.847 -0.014
(0.086) (0.041) (0.024) (0.087) (0.116) (23.559) (0.002) (0.020) (0.013)

Textiles, wearing apparel 0.468 0.416 0.093 0.977 1.020 50.659 0.002 0.860 0.013
(0.055) (0.029) (0.014) (0.041) (0.047) (280.992) (0.003) (0.014) (0.019)

Wood, paper products 0.398 0.464 0.073 0.935 1.035 28.470 0.001 0.718 0.003
(0.333) (0.097) (0.038) (0.370) (0.208) (32.896) (0.016) (0.042) (0.088)

Chemical products 0.592 0.356 0.100 1.049 0.971 -34.610 -0.002 0.871 -0.016
(1.354) (0.443) (0.046) (1.832) (0.185) (706.536) (0.178) (0.018) (1.176)

Rubber and plastic 0.541 0.420 0.085 1.045 0.941 -16.945 -0.003 0.806 -0.018
(0.412) (0.023) (0.065) (0.488) (0.149) (103.942) (0.028) (0.014) (0.160)

Basic metal and fabricated metal 0.324 0.483 0.112 0.919 1.058 17.159 0.003 0.807 0.014
(0.051) (0.015) (0.017) (0.068) (0.076) (134.295) (0.003) (0.016) (0.017)

Computer, electronics 0.527 0.431 0.088 1.045 0.957 -23.480 -0.004 0.820 -0.023
(0.092) (0.058) (0.015) (0.103) (0.094) (228.626) (0.010) (0.023) (0.053)

Electrical equipment 0.520 0.373 0.079 0.972 1.020 49.988 0.001 0.818 0.006
(8.582) (3.284) (0.292) (12.149) (0.462) (279.117) (0.502) (0.017) (2.980)

Machinery and equipment 0.441 0.488 0.069 0.998 0.993 -136.461 -0.002 0.767 -0.008
(0.032) (0.039) (0.004) (0.067) (0.076) (617.599) (0.005) (0.009) (0.019)

Autos and transport equipment 0.623 0.379 0.078 1.081 0.931 -14.571 -0.003 0.831 -0.017
(0.310) (0.686) (0.059) (0.774) (0.504) (139.466) (0.026) (0.022) (0.138)

Other manufacturing 0.372 0.444 0.115 0.931 1.018 55.878 0.001 0.836 0.007
(0.013) (0.008) (0.004) (0.019) (0.024) (3157.226) (0.001) (0.012) (0.006)

Notes. The table reports estimates based on the multi-market model, using the control function estimator: average output elasticities
σ j for materials input ( j = M), labor ( j = L) and capital ( j = M), overall returns to scale (RTS), the demand elasticity η = 1/(ρ −1),
the coefficient to learning by exporting µ , the persistence parameter in the controlled Markov h, and the long run effect of exporting
µ/(1−h). Bootstrap standard errors clustered by firm in parentheses.
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Table H.10: Estimates using Single-Market Model (KG), Control Function Estimator

Industry σM σL σK RTS ρ η = 1
(ρ−1) µ h µ/(1−h)

Food, beverage, tobacco 6.272 1.400 1.386 9.059 0.101 -1.112 -0.006 0.824 -0.032
(2.624) (0.351) (0.681) (3.627) (0.285) (0.557) (0.012) (0.046) (0.072)

Textiles, wearing apparel 0.242 0.341 0.040 0.624 1.734 1.362 -0.009 0.816 -0.048
(0.136) (0.147) (0.048) (0.054) (0.370) (11.992) (0.018) (0.020) (0.097)

Wood, paper products 1.052 -4.057 -0.015 -3.019 -0.525 -0.656 0.017 0.824 0.095
(2.211) (21.919) (0.577) (20.339) (0.849) (19.361) (0.155) (0.029) (0.896)

Chemical products 1.288 0.259 0.344 1.891 0.501 -2.006 0.036 0.853 0.246
(0.480) (0.501) (0.076) (0.961) (0.226) (2.695) (0.025) (0.052) (0.164)

Rubber and plastic -2.141 -1.671 -0.391 -4.203 -0.233 -0.811 -0.001 0.805 -0.004
(5.523) (1.390) (1.112) (7.943) (0.263) (0.437) (0.264) (0.030) (2.012)

Basic metal and fabricated metal 0.671 0.041 0.215 0.927 0.920 -12.504 -0.004 0.931 -0.058
(0.180) (1.772) (0.110) (1.708) (0.453) (5.492) (0.008) (0.010) (0.141)

Computer, electronics 0.491 0.459 0.082 1.032 0.968 -30.831 0.001 0.767 0.003
(0.016) (0.384) (0.043) (0.351) (0.199) (46.306) (0.003) (0.030) (0.016)

Electrical equipment 0.541 0.332 0.080 0.953 1.034 29.313 -0.001 0.815 -0.004
(0.017) (0.092) (0.020) (0.091) (0.070) (237.863) (0.006) (0.022) (0.045)

Machinery and equipment 1.207 0.973 0.181 2.361 0.420 -1.723 -0.014 0.805 -0.073
(0.322) (4.167) (0.119) (4.345) (0.906) (117.510) (0.211) (0.021) (0.821)

Autos and transport equipment 0.776 0.105 0.104 0.985 0.995 -198.898 -0.006 0.828 -0.034
(0.411) (0.538) (0.052) (0.087) (0.021) (558.209) (0.011) (0.026) (0.064)

Other manufacturing 0.985 0.624 0.365 1.974 0.464 -1.865 -0.013 0.786 -0.061
(1.134) (1.643) (0.376) (2.942) (1.066) (0.796) (0.018) (0.011) (0.086)

Notes. The table reports estimates based on the single-market model à la Klette & Griliches (1996), using the control function estimator:
average output elasticities σ j for materials input ( j = M), labor ( j = L) and capital ( j = M), overall returns to scale (RTS), the demand
elasticity η = 1/(ρ −1), the coefficient to learning by exporting µ , the persistence parameter in the controlled Markov h, and the long
run effect of exporting µ/(1−h). Bootstrap standard errors clustered by firm in parentheses.
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Table H.11: Estimates using Single-Market Model (KG), on Sample of Non-Exporters, Control Function Estimator

Industry σM σL σK RTS ρ η = 1
(ρ−1) µ h µ/(1−h)

Food, beverage, tobacco 6.288 1.403 1.390 9.081 0.101 -1.112 - 0.824 -
(2.568) (0.355) (0.666) (3.555) (0.234) (14.683) (0.050)

Textiles, wearing apparel 0.243 0.350 0.044 0.637 1.672 1.489 - 0.817 -
(0.425) (0.432) (0.127) (0.125) (0.312) (1.979) (0.020)

Wood, paper products 0.831 -2.156 0.048 -1.277 -1.568 -0.389 - 0.821 -
(1.818) (17.279) (0.628) (16.420) (0.869) (42.193) (0.023)

Chemical products 7.214 6.731 0.830 14.776 0.071 -1.077 - 0.849 -
(0.403) (0.683) (0.078) (0.983) (0.252) (1.442) (0.051)

Rubber and plastic -2.143 -1.671 -0.391 -4.205 -0.233 -0.811 - 0.805 -
(7.894) (2.003) (1.711) (11.467) (0.289) (0.338) (0.030)

Basic metal and fabricated metal 0.669 0.029 0.211 0.908 0.929 -14.178 - 0.931 -
(0.407) (2.157) (0.286) (2.056) (0.537) (4.951) (0.012)

Computer, electronics 0.483 0.550 0.065 1.097 0.913 -11.504 - 0.793 -
(0.025) (0.103) (0.026) (0.080) (0.076) (32.094) (0.030)

Electrical equipment 0.599 0.361 0.127 1.087 0.924 -13.227 - 0.844 -
(0.022) (0.084) (0.020) (0.076) (0.060) (3113.756) (0.022)

Machinery and equipment 1.241 1.002 0.190 2.433 0.405 -1.681 - 0.803 -
(0.339) (3.677) (0.107) (3.900) (0.962) (5.230) (0.019)

Autos and transport equipment 0.775 0.101 0.104 0.980 0.995 -195.595 - 0.829 -
(0.274) (0.375) (0.038) (0.071) (0.016) (1405.936) (0.024)

Other manufacturing -0.015 -1.166 -0.002 -1.183 -1.041 -0.490 - 0.801 -
(0.736) (1.293) (0.241) (2.135) (1.278) (1.202) (0.009)

Notes. The table reports estimates based on the single-market model à la Klette & Griliches (1996), using the control function estimator,
where we restrict the sample to non-exporting firms: average output elasticities σ j for materials input ( j = M), labor ( j = L) and capital
( j = M), overall returns to scale (RTS), the demand elasticity η = 1/(ρ −1), the coefficient to learning by exporting µ , the persistence
parameter in the controlled Markov h, and the long run effect of exporting µ/(1− h). Bootstrap standard errors clustered by firm in
parentheses.
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Table H.12: Estimates using No Demand Correction, Control Function Estimator

Industry σM σL σK RTS ρ η = 1
(ρ−1) µ h µ/(1−h)

Food, beverage, tobacco 0.613 0.264 0.094 0.971 - - 0.026 0.948 0.505
(0.004) (0.010) (0.005) (0.008) (0.004) (0.002) (0.063)

Textiles, wearing apparel 0.463 0.427 0.114 1.005 - - 0.018 0.955 0.401
(0.038) (0.067) (0.010) (0.031) (0.010) (0.015) (0.177)

Wood, paper products -1.383 3.542 -0.090 2.070 - - 0.161 0.828 0.934
(0.531) (0.906) (0.047) (0.329) (0.052) (0.048) (0.301)

Chemical products 0.581 0.309 0.117 1.007 - - 0.021 0.916 0.253
(0.019) (0.049) (0.020) (0.018) (0.007) (0.043) (0.263)

Rubber and plastic 0.360 0.878 0.045 1.283 - - 0.016 0.879 0.134
(0.249) (0.589) (0.055) (0.311) (0.030) (0.026) (0.254)

Basic metal and fabricated metal 0.388 0.458 0.126 0.972 - - 0.011 0.958 0.271
(0.018) (0.026) (0.006) (0.004) (0.002) (0.014) (0.049)

Computer, electronics 0.711 0.061 0.209 0.982 - - -0.108 0.834 -0.647
(0.277) (0.389) (0.102) (0.020) (0.106) (0.048) (0.693)

Electrical equipment 0.532 0.394 0.058 0.984 - - 0.071 0.889 0.634
(0.245) (0.360) (0.064) (0.075) (0.078) (0.041) (0.649)

Machinery and equipment 0.483 0.433 0.063 0.979 - - 0.002 0.910 0.020
(0.340) (0.385) (0.029) (0.021) (0.038) (0.055) (0.242)

Autos and transport equipment 0.632 0.271 0.092 0.994 - - 0.022 0.879 0.178
(0.084) (0.110) (0.015) (0.017) (0.023) (0.037) (0.272)

Other manufacturing 0.397 0.443 0.118 0.958 - - 0.012 0.957 0.273
(0.045) (0.093) (0.019) (0.031) (0.011) (0.033) (0.081)

Notes. The table reports estimates without correcting for demand at all, using the control function estimator: average output elasticities
σ j for materials input ( j = M), labor ( j = L) and capital ( j = M), overall returns to scale (RTS), the demand elasticity η = 1/(ρ −1),
the coefficient to learning by exporting µ , the persistence parameter in the controlled Markov h, and the long run effect of exporting
µ/(1−h). Bootstrap standard errors clustered by firm in parentheses.
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I Comparison to Almunia et al. (2021)

In recent work, Almunia et al. (2021) also specify a model with multiple destinations, monopolistic
competition, and quasi-fixed capital. They also estimate production function parameters and the
elasticity of demand, as we do. There are three key differences between the production function
estimation in Almunia et al. (2021) and ours. First, Almunia et al. (2021) do not control for firm-
specific demand shifters when estimating the capital coefficients. Implicitly, Almunia et al. (2021)
assume that all firms within a sector sell to the same unique market, despite having written a model
with multiple destinations. Second, Almunia et al. (2021) assume that firms are myopic with
respect to ex post destination specific demand shocks (E [eu f t ] = 1). Third, Almunia et al. (2021)
implicitly assume constant returns to flexible inputs when estimating the elasticity of demand,
which is inconsistent with the thrust of their main findings.

Almunia et al. (2021) claim (see Appendix F.1 of Almunia et al. (2021)) that the assumption of
monopolistic competition implies (in their notation) that

Rit −Cv
it =

1
σ

Rit , (I.1)

where Rit is total revenues of firm i at time t, Cv
it denotes the total variable cost of firm i at time t,

and σ is the elasticity of substitution. Equivalently, we can define in our notation the total variable
cost of firm f in time t,

Cost f t
(
Q f t
)
= ∑

j
ev j

f tW j
t , (I.2)

or assuming just two flexible inputs—materials and labor—(I.2) becomes

Cost f t
(
Q f t
)
= em f tW m

t + el f tW l
t . (I.3)

We can then re-write (I.1) in our notation

R f t −Cost f t
(
Q f t
)
= (1−ρ)R f t . (I.4)

Based on assumption (I.1), and substituting for Cv
t with expenditures on flexible inputs, Almu-

nia et al. (2021) derive the following moment condition (in their notation)

E

[
ln
(

σ −1
σ

)
+ robs

it − ln
(
PM

it Mit +witLit
)]

= 0, (I.5)
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or in our notation

E

[
lnρ + r f t − ln

(
W m

f t e
m f t +W l

f te
l f t
)]

= 0. (I.6)

If the assumption in (I.1) were to hold, then indeed the moment condition (I.6) could be exploited
to identify the curvature of demand (ρ , in our notation). But as we show below, (I.1) requires both
(in our notation) E [eu f t ] = 1 and constant marginal costs. This implies that firms are myopic with
respect to ex post destination specific demand shocks, and that variable returns to scale are unitary.

We can rewrite the optimization problem of a firm from section 3 for a fixed set of destinations
using the variable cost function (I.3):

max
χχχ f t ,Q f t

L = E

[
Qρ

f t ∑
d∈Ω f t

(
χ

d
f t

)ρ

Dd
t eεd

f t+ud
f t

]
−Cost f t

(
Q f t
)
+λ f t

(
1− ∑

d∈Ω f t

χ
d
f t

)
(I.7)

which leads to first order condition for Q f t

ρ
(
Q f t
)ρ−1

[
∑

d∈Ω f t

(
Dd

t eεd
f t
) 1

1−ρ

]1−ρ

E [eu] =
∂Cost f t

(
Q f t
)

∂Q f t
, (I.8)

Multiplying both sides by Q f t , we have

ρ
(
Q f t
)ρ

[
∑

d∈Ω f t

(
Dd

t eεd
f t
) 1

1−ρ

]1−ρ

E [eu] =
∂Cost f t

(
Q f t
)

∂Q f t
Q f t , (I.9)

and substituting with total revenues

ρE [eu]R f tψ
−1
f t =

∂Cost f t
(
Q f t
)

∂Q f t
Q f t , (I.10)

Now if we set E [eu] = 1 and we assume
∂Cost f t(Q f t)

∂Q f t
Q f t = Cost f t

(
Q f t
)
, we get the moment

condition (I.6). But with non-constant marginal cost,
∂Cost f t(Q f t)

∂Q f t
Q f t ̸=Cost f t

(
Q f t
)
. In particular,

with decreasing returns to flexible inputs – the necessary condition for cross-market complemen-

tarities –
∂Cost f t(Q f t)

∂Q f t
Q f t ̸=Cost f t

(
Q f t
)
.

Hence, the assumptions necessary for identification of the curvature in demand in (I.1) are
inconsistent with the mechanism under study in (I.1). Moreover, if one wants to estimate returns
to flexible inputs, as we do, the assumptions embedded in (I.6) entail that returns to flexible inputs
are unitary, so there is no need to estimate them.
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